dc.contributor.advisor | 廖四郎<br>江彌修 | zh_TW |
dc.contributor.advisor | <br> | en_US |
dc.contributor.author (Authors) | 陳志成 | zh_TW |
dc.creator (作者) | 陳志成 | zh_TW |
dc.date (日期) | 2002 | en_US |
dc.date.accessioned | 17-Sep-2009 18:59:28 (UTC+8) | - |
dc.date.available | 17-Sep-2009 18:59:28 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-Sep-2009 18:59:28 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0090352006 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/33975 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 金融研究所 | zh_TW |
dc.description (描述) | 90352006 | zh_TW |
dc.description (描述) | 91 | zh_TW |
dc.description.abstract (摘要) | This paper provides an analytical framework for dynamic portfolio strategies that are mean-variance efficient and subjected to a principal-guaranteed rate. Specifying a numeraire known as growth-optimal portfolio, we apply martingale method instead of dynamic programming approach to solve the optimal problem. Under the general assumptions of the price dynamics being a semi-martingale with finite expectation and variance, the efficient strategies are identified as a combination of put options on minimum norm portfolio and zero coupon bonds with the maturity of investment horizon. In the case of a single factor interest rate model, we derive the closed-form formula for optimal weights on securities. We conduct numerical simulations to illustrate the performance of the optimal strategies in the case of an economy comprising a stock index fund, a bond index fund and a money market account. In addition, for different investors with various interests like principal guaranted rate and investment horizon, we also show how investors ought to allocate their funds. | zh_TW |
dc.description.abstract (摘要) | This paper provides an analytical framework for dynamic portfolio strategies that are mean-variance efficient and subjected to a principal-guaranteed rate. Specifying a numeraire known as growth-optimal portfolio, we apply martingale method instead of dynamic programming approach to solve the optimal problem. Under the general assumptions of the price dynamics being a semi-martingale with finite expectation and variance, the efficient strategies are identified as a combination of put options on minimum norm portfolio and zero coupon bonds with the maturity of investment horizon. In the case of a single factor interest rate model, we derive the closed-form formula for optimal weights on securities. We conduct numerical simulations to illustrate the performance of the optimal strategies in the case of an economy comprising a stock index fund, a bond index fund and a money market account. In addition, for different investors with various interests like principal guaranted rate and investment horizon, we also show how investors ought to allocate their funds. | en_US |
dc.description.tableofcontents | I. Introduction…………………………………………………1II.The Continuous-Time Portfolio Problem…………………3A. The Problems and Approaches……………………………3B. Technical Background:Numeraire Portfolio and Minimum Norm Portfolio…………….……….3B.1 The Numeraire Portfolio…………………………………4B.2 Dynamic Mean-Variance Efficient Asset Allocation Without Constraint………………………………………6B.3 The Minimum Norm Portfolio…………………………...9III. Dynamic Mean-Variance Efficient Asset Allocation under Principal-Guaranteed Constraint…………..12IV. Simulation Examples…………………………………….17 Simulation Results……………………………………...20V. Conclusion…………………………………………………25Appendix A…………………………………………………...26Appendix B…………………………………………………...27Appendix C…………………………………………………...28References…………………………………………………….30 | zh_TW |
dc.format.extent | 16033 bytes | - |
dc.format.extent | 13822 bytes | - |
dc.format.extent | 16805 bytes | - |
dc.format.extent | 15133 bytes | - |
dc.format.extent | 23890 bytes | - |
dc.format.extent | 127876 bytes | - |
dc.format.extent | 76433 bytes | - |
dc.format.extent | 122846 bytes | - |
dc.format.extent | 16974 bytes | - |
dc.format.extent | 70815 bytes | - |
dc.format.extent | 14314 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0090352006 | en_US |
dc.subject (關鍵詞) | 動態配置 | zh_TW |
dc.subject (關鍵詞) | 下方風險有限 | zh_TW |
dc.title (題名) | Dynamic Asset Allocation under Controlled Downside Risk | zh_TW |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | References | zh_TW |
dc.relation.reference (參考文獻) | Alexander, Gordon, Baptista, 2001, A VaR-Constrained Mean-Variance Model: Implications for Portfolio Selection and the Basle Capital Accord. | zh_TW |
dc.relation.reference (參考文獻) | Bajeux-Besnainou I., J. Jordan and R. Portait, 2001, Dynamic Asset Allocation for Stocks, Bonds and Cash, Journal of Business, forthcoming. | zh_TW |
dc.relation.reference (參考文獻) | Bajeux-Besnainou I. and R. Portait, 1997, The Numeraire Portfolio: a new Methodology for Financial Theory, The European Journal of Finance 3, 291-309. | zh_TW |
dc.relation.reference (參考文獻) | Bajeux-Besnainou I. and R. Portait, 1998, Dynamic Asset Allocation in a Mean-Variance Framework, Management Science 44, S79-S95. | zh_TW |
dc.relation.reference (參考文獻) | Bajeux, I., Jordan J. and R. Portait, 2001, September, The Stock/Bond ratio asset allocation puzzle: comment, American Economic Review 4, 1170, 1180. | zh_TW |
dc.relation.reference (參考文獻) | Brennan, Michael J., Eduardo S. Schwartz, and Ronald Lagnado, 1997, Strategic asset allocation, Journal of Economic dynamics and Control 21, 1377-1403. | zh_TW |
dc.relation.reference (參考文獻) | Chow, Gregory C, 1996, The Lagrange method of optimization with application to portfolio and investment decisions, Journal of Economic dynamics and Control 20, 1-18. | zh_TW |
dc.relation.reference (參考文獻) | Cox, J. and C. F. Huang, 1989, Optimal consumption and portfolio choices when asset | zh_TW |
dc.relation.reference (參考文獻) | prices follow a diffusion process, Journal of Economic Theory 49, 33-83. | zh_TW |
dc.relation.reference (參考文獻) | Domenico Cuoco and Hua H, 2001, September, Optimal Dynamic Trading Strategies with Risk Limits | zh_TW |
dc.relation.reference (參考文獻) | Duffie, 1992, Dynamic Asset Pricing Theory, Princeton University Press. | zh_TW |
dc.relation.reference (參考文獻) | Harrison, J.M. and S. Pliska, Martingales and Stochastic Integrals in the Theory | zh_TW |
dc.relation.reference (參考文獻) | of Continuous Trading, Stochastic Processes and their Applications 11, 215-260. | zh_TW |
dc.relation.reference (參考文獻) | J.B. Long, Jr. (1990), The numeraire portfolio, Journal of Financial Economics, 29–69. | zh_TW |
dc.relation.reference (參考文獻) | Merton, Robert C., 1990, Continuous - Time Finance, Basil Blackwell. | zh_TW |
dc.relation.reference (參考文獻) | Portfolio selection and asset pricing, 2002, Berlin, New York : Springer. | zh_TW |
dc.relation.reference (參考文獻) | Richardson, H, 1989, A Minimum Variance Result in Continuous Trading Portfolio Optimization, Management Science 35, 1045-1055. | zh_TW |
dc.relation.reference (參考文獻) | River Edge, N.J, 1997,Optimal portfolios : stochastic models for optimal investment and risk management in continuous time. Singapore, World Scientific. | zh_TW |
dc.relation.reference (參考文獻) | Strategic asset allocation: portfolio choice for long-term investors, 2002, Oxford University Press. | zh_TW |
dc.relation.reference (參考文獻) | 黃鴻禧, Optimal Dynamic Asset Allocation and Rational Expectations Equilibrium, | zh_TW |
dc.relation.reference (參考文獻) | 民91,台灣大學財務金融研究所 | zh_TW |