Publications-Theses

題名 企業財務槓桿效果之再探討:動態 Panel Data 方法之應用
作者 林景民
貢獻者 杜化宇
林景民
關鍵詞 不對稱效果
動態縱橫資料
日期 2004
上傳時間 17-Sep-2009 19:25:13 (UTC+8)
摘要 本研究目的在於探討隱含波動度不對稱效果,並分析公司規模與財務槓桿比率對於波動度不對稱的影響。波動度不對稱效果是指負向報酬衝擊對波動度增加的影響較正向報酬衝擊大。由於過去的文獻多針對現貨與期貨價格行為上的研究,並以條件變異數衡量波動度,本研究則試著以選擇權之隱含波動度作為波動度不對稱效果的衡量基礎,希冀以隱含波動度代表未來波動度的不偏估計量,反應出投資者對於未來的預期。本研究選取29支英國的個股選擇權,並利用EGARCH(1,1)模型來探討在股票價格變動下,個股選擇權所反應出來的波動度不對稱效果,研究期間主要從2000年1月25日至2003年12月31日止。而在驗證波動度不對稱效果確實存在下,我們更進一步以Pooled OLS模型、靜態Panel Data 模型與動態Panel Data模型來探討公司規模與財務槓桿比率對隱含波動度不對稱效果之關係。
本文之主要結論如下:
1. 在29家英國樣本公司中,確實均存在隱含波動度不對稱之效果,即負向股票價格變動對隱含波動度的影響較正向股票價格變動為大。
2. 在分析公司資產規模與公司財務槓桿影響波動度不對稱效果,若只以Pooled OLS模型分析,可能產生錯誤的推論,雖然公司規模為顯著性正相關,但財務槓桿則為不顯著之負相關,其實證結果與KS不一致,並且不能支持Black(1976)之槓桿效果。
3. 為了避免使用 Pooled OLS模型產生錯誤的推論,本研究另以靜態Panel Data 模型來分析波動度不對稱程度與公司資產規模和財務槓桿之關係,對於公司資產規模因素而言,不管在公司效果(固定模式)與時間效果(隨機模式)均呈現顯著之正相關,而在同時考量公司效果及時間效果(隨機模式)下,則呈現不顯著之正相關,此結果與KS的推論一致。而對於財務槓桿而言,則只有在公司效果(固定模式)呈現顯著之正相關,在同時考量公司效果及時間效果則呈現不顯著之正相關,而若單只考慮時間效果,則係數為-0.000(不顯著),則與KS推論不符合,且不支持Black之槓桿效果假說。
4. 為了較正確反應投資市場是有記憶性與調整性,我們另以動態Panel Data 模型來作實證,而這亦是一般較符合市場之模型,實證結果顯示不管在one-step 或 two-step 下,公司財務規模與財務槓桿確實與波動度不對稱性呈現顯著正相關,其結果與KS一致,且支持Black所提出之槓桿效果,而動態的延遲項則呈現不顯著(推測受限於樣本數過少)之負相關(係數為負,且值小於1),若以部分調整模型之經濟意義來解釋,即調整係數值均大於1,顯示出實際市場反應出來的波動度不對稱之結果,大於投資人對於波對度不對稱情形預期的調整,這可能是選擇權市場投資人之過度反應的行為所造成,故可能使得前期項對於後期項的影響為負,但會逐漸消失。
The purpose of the research is to discuss the asymmetric effect of volatility, and analyze firm scale and debt ratio affect the asymmetric effect of volatility. Asymmetric effect of volatility is the influence of negative return is more than positive return. Most research focus on the futures and spot goods,and takes conditional variance as volatility. We want to use IV as unbiased estimator of volatility in the future, and reflect the investor’s expectation. We chose 29 call options in English, and use EGARCH (1,1) model to explore the asymmetric effect of volatility over 2000/1/25-2003/12/31 period. After confirming the asymmetric effect of volatility, we use Pooled OLS Model, Static Panel Data Model, and Dynamic Panel Data Model to discuss the relationship between firm scale, debt ratio, and asymmetric effect.
The funding of the paper are:
(a) There is certainly the existence of asymmetric effect in 29 sample firms.
(b) Pooled OLS Model may result wrong conclusions. There is a significantly positive relationship between firm scale and asymmetric effect. And there is a less significantly negative relationship between debt ratio and asymmetric effect. The result doesn’t consist with KS, and doesn’t support Black’s leverage effect.
(c) To avoid the error from Pooled OLS Model, we use Static Panel Data Model to analyze the relationship with firm scale, debt ratio, and asymmetric effect. Asymmetric effect is significantly positively related to firm scale with single corporate effect (fixed effect) and single time effect (random effect). And asymmetric effect is less significantly positively impacted by firm scale if we chose corporate effect and time effect simultaneously. Asymmetric effect is significantly positively related to debt ratio with single corporate effect (fixed effect), and is less significantly positively related to debt ratio with corporate effect and time effect simultaneously. The coefficient is -0.000 (less significantly) of debt ratio with single time effect. The result doesn’t consist with KS, and doesn’t support Black’s leverage effect.
(d) For showing capital market’s memory and adjustability, we use Dynamic Panel Data Model to analyze the problem. Asymmetric effect is significantly positively impacted by firm scale and debt ration in one-step model and two-step model. The result consists with KS, and supports Black’s leverage effect. The coefficient of lagged term is between 0 and -1 (less significantly) may be come from the real asymmetric effect is more than investor’s expectancy, and investors my have overreaction in capital market.
參考文獻 一、 中文部分(依作者姓氏排序)
周弘敏, “個股選擇權之隱含波動度不對稱效果決定因素之探討─以Panel Data模型分析”,政治大學財務管理研究所未出版碩士論文,民國九十二年六月。
黃淑娟, “影響台灣地區產險公司現金持有之決定因素:動態現金持有模型之實證研究”,真理大學管理科學研究所未出版碩士論文,民國九十二年六月。
楊奕農,時間序列分析:經濟與財務上應用,民國九十二年,雙葉書廊。
劉威漢,財金風險管理理論、應用與發展趨勢,民國九十三年,智勝文化事業。
二、 英文部分(依作者姓氏排序)
Arellano, M. and S. Bond, (1991), “Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations”, The Review of Economic Studies, Vol. 58, P277-297.
Arellano, M. and O. Bover, (1995), ”Another look at the instrumental variables estimation of error-component models”, Journal of Econometrics , Vol. 68, P29-51
Bessembinder, H. and P. J. Swguin, (1993), ”Price Volatility, Trading Volume, and Market Depth: Evidence from Futures Markets”, Journal of Financial and
Quantitative Analysis, Vol. 28, P21-39.
Black, F. (1976), “Studies of Stock, Price Volatility Changes”, Proceedings of the
1976 Meetings of the Business and Economics Statistics Section, American Statistical Association, P177-181.
Blair, B., S. H. Poon, and S. J. Taylor, (2002) “Asymmetric and Crash Effects in Stock Volatility for the S&P 100 Index and Its Constituents”, Applied Financial Economics, Vol. 12, P319-329.
Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroscedasticity”, Journal of Econometrics, Vol. 31, P307-327.
Breusch, T., and A. Pagan. (1980), “The LM Test and Its Applications to Model Specification in Econometrics”, Review of Economic Studies, Vol. 47, P239-254.
Braun, P. A, D.B. Nelson, and A. M. Sunier (1995), “Good News, Bad News, Volatility, and Betas”, Journal of Finance, Vol.50, P1575-1603.
Cagan, P. (1956), “The Monetary dynamics of Hyperinflation,” in M. Friedman (ed.), Studies in the Quantity Theory of Money, Chicago: University Of Chicago Press, P25-117.
Campbell, J. Y. and L. Hentschel, (1992), “No News is Good News:An Asymmetric Model of Changing Volatility in Stock Returns”, Journal of Financial Economics, Vol. 31, P281-318.
Cheung, Y. W. and Ng, L. K. (1992), “Stock Price Dynamics and Firm Size: An Empirical Investigation”, Journal of Finance, Vol. 48, P1985-1997.
Christie, A. (1982), “The Stochastic Behavior of Common Stock Variance: Value, Leverage and Interest Rate Effects”, Journal of Financial Economics, Vol. 10,
P407-432.
Davidson, W. N., J. K. Kim, E. Ors, and A. Szakmary, (2001), “Using Implied Volatility on Options to Measure the Relation Between Asset Returns and Variability”,Journal of Banking & Finance, Vol. 25, P1245-1269.
Duffee, G. R. (1995), “Stock Returns and Volatility: A Firm- Level Analysis”, Journal of Financial Economics, Vol. 37, P399-420.
Engle, R. F. (1990), “Discussion: Stock Market Volatility and the Crash of ’87”, Review of Financial Studies, Vol. 3, P103-106.
Engle, R. F. (1982), “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of UK Inflation”, Econometrica, Vol. 50, P987-1008.
Engle, R. F. and V. K. Ng (1993), “Measuring and Testing the Impact of News on Volatility”, Journal of Finance, Vol. 48, P1749-1778.
Figlewski, S. and X. Wang (2000), “IS the “Leverage Effect“ a Leverage Effect?”, Working Paper, New York University, Stern School of Business.
Flannery, M. J. (1981), “Market interest rates and commercial bank profitability:An empirical investigation”, Journal of Finance, Vol. 36, P1085-1101.
Flannery, M. J. (1983), “Interest rates and banks profitability:Additional evidence”, Journal of Money,Credit and Banking, Vol. 15, P355-362.
Fleming, J. (1998), “The Quality of Market Volatility Forecasts Implied by S&P 100 Index Option Prices”, Journal of Empirical Finance, Vol. 5, P317-345.
Fleming, J., Ostdiek, B., and Whaley, R. E. (1995), “Predicting Stock Market Volatility: A New Measure”, Journal of Futures Markets, Vol. 15, P265-302.
French, R. K., G. W. Schwert, and R. F. Stambaugh, (1987), “Expected Stock Returns
and Volatility,” Journal of Financial Economics, Vol. 19, P3-29.
Gallant, A. R., P. E. Rossi, and G. Tauchen, (1992), “Stock Prices and Volume”, The Review of Financial Studies, Vol. 5, P199-242.
Glosten, L. R., R. Jagannathan, and D. E. Runkle, (1993), “On the Relation Between the Expected Value and Volatility of the Nominal Excess Return on Stocks”, Journal
of Finance, Vol. 48, P1779-1801.
Greene, W. H. (2000), Econometric Analysis, Fourth Edition.
Hansen, L.P. (1982),“Large Sample Properties of Generalized Method of Moments Estimators”, Econometrica, Vol. 50, P1024-54.
Johnston, J. and Dinardo, J. (1997), Econometric Methods, Fourth Edition.
Jorion, Philippe, (1995), “Predicting Volatility in the Foreign Exchange Market”, Journal of Finance, Vol. 2, P507-528.
Koutmos, G. (1998), “Asymmetries in the Conditional Mean and the Conditional Variance: Evidence From Nine Stock Markets”, Journal of Economics and Business, Vol. 50, P277-290.
Koutmos, G. and G.G. Booth, (2002), “Asymmetric Volatility Transmission in International Stock Markets”, Journal of International Money and Finance, Vol. 14, P747-762.
Koutmos, G. and Saidi, R. (1995), “The Leverage Effect in Individual Stocks and the Debt to Equity Ratio”, Journal of Business Finance and Accounting, Vol. 22,
P1063-1075.
Longin, F. and Solnik, B. (1995), “Is the Correlation in International Equity Returns
Constant: 1960-1990?”, Journal of International Money and Finance, Vol. 14, P3-26. 
Nelson, D. (1991), “Conditional Heteroskedasticity in Asset Returns: A New
Approach,” Econometrica, Vol. 59, P347-370.
Nam Kiseok, Chong Soo Pyun, and Stephen L. Avard, (2001),” Asymmetric reverting behavior of short-horizon stock returns: an evidence of stock market overreaction”, Journal of Banking & Finance Vol. 25, P807-824.
Rabemananjara, R. and J. M. Zakoian, (1993), “Threshold ARCH Models and Asymmetries in Volatility”, Journal of Applied Econometrics, Vol. 8, P31-49.
Sargan, J. D., (1958), “The Estimation of Economic Relationships Using Instrumental Variables”, Econometrica, Vol. 26, P393-415.
Schwert, G. W. (1989), “Why Does Stock Market Volatility Change Over Time?”, Journal of Finance, Vol. 44, P1115-1153.
Schwert, G. W. (1990), “Stock Volatility and the Crash of ’87”, Review of Financial Studies, Vol. 3, P77-102.
Simon, D. P. (1997), “Implied Volatility Asymmetries in Treasury Bond Futures Options”, Journal of Futures Markets, Vol. 17, P873-885.
Zakoian, J.M. (1994), “Threshold Heteroskedastic Models”, Journal of Economic Dynamics and Control, Vol. 18, P931-955.
描述 碩士
國立政治大學
財務管理研究所
923570011
93
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0923570011
資料類型 thesis
dc.contributor.advisor 杜化宇zh_TW
dc.contributor.author (Authors) 林景民zh_TW
dc.creator (作者) 林景民zh_TW
dc.date (日期) 2004en_US
dc.date.accessioned 17-Sep-2009 19:25:13 (UTC+8)-
dc.date.available 17-Sep-2009 19:25:13 (UTC+8)-
dc.date.issued (上傳時間) 17-Sep-2009 19:25:13 (UTC+8)-
dc.identifier (Other Identifiers) G0923570011en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/34084-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 財務管理研究所zh_TW
dc.description (描述) 923570011zh_TW
dc.description (描述) 93zh_TW
dc.description.abstract (摘要) 本研究目的在於探討隱含波動度不對稱效果,並分析公司規模與財務槓桿比率對於波動度不對稱的影響。波動度不對稱效果是指負向報酬衝擊對波動度增加的影響較正向報酬衝擊大。由於過去的文獻多針對現貨與期貨價格行為上的研究,並以條件變異數衡量波動度,本研究則試著以選擇權之隱含波動度作為波動度不對稱效果的衡量基礎,希冀以隱含波動度代表未來波動度的不偏估計量,反應出投資者對於未來的預期。本研究選取29支英國的個股選擇權,並利用EGARCH(1,1)模型來探討在股票價格變動下,個股選擇權所反應出來的波動度不對稱效果,研究期間主要從2000年1月25日至2003年12月31日止。而在驗證波動度不對稱效果確實存在下,我們更進一步以Pooled OLS模型、靜態Panel Data 模型與動態Panel Data模型來探討公司規模與財務槓桿比率對隱含波動度不對稱效果之關係。
本文之主要結論如下:
1. 在29家英國樣本公司中,確實均存在隱含波動度不對稱之效果,即負向股票價格變動對隱含波動度的影響較正向股票價格變動為大。
2. 在分析公司資產規模與公司財務槓桿影響波動度不對稱效果,若只以Pooled OLS模型分析,可能產生錯誤的推論,雖然公司規模為顯著性正相關,但財務槓桿則為不顯著之負相關,其實證結果與KS不一致,並且不能支持Black(1976)之槓桿效果。
3. 為了避免使用 Pooled OLS模型產生錯誤的推論,本研究另以靜態Panel Data 模型來分析波動度不對稱程度與公司資產規模和財務槓桿之關係,對於公司資產規模因素而言,不管在公司效果(固定模式)與時間效果(隨機模式)均呈現顯著之正相關,而在同時考量公司效果及時間效果(隨機模式)下,則呈現不顯著之正相關,此結果與KS的推論一致。而對於財務槓桿而言,則只有在公司效果(固定模式)呈現顯著之正相關,在同時考量公司效果及時間效果則呈現不顯著之正相關,而若單只考慮時間效果,則係數為-0.000(不顯著),則與KS推論不符合,且不支持Black之槓桿效果假說。
4. 為了較正確反應投資市場是有記憶性與調整性,我們另以動態Panel Data 模型來作實證,而這亦是一般較符合市場之模型,實證結果顯示不管在one-step 或 two-step 下,公司財務規模與財務槓桿確實與波動度不對稱性呈現顯著正相關,其結果與KS一致,且支持Black所提出之槓桿效果,而動態的延遲項則呈現不顯著(推測受限於樣本數過少)之負相關(係數為負,且值小於1),若以部分調整模型之經濟意義來解釋,即調整係數值均大於1,顯示出實際市場反應出來的波動度不對稱之結果,大於投資人對於波對度不對稱情形預期的調整,這可能是選擇權市場投資人之過度反應的行為所造成,故可能使得前期項對於後期項的影響為負,但會逐漸消失。
zh_TW
dc.description.abstract (摘要) The purpose of the research is to discuss the asymmetric effect of volatility, and analyze firm scale and debt ratio affect the asymmetric effect of volatility. Asymmetric effect of volatility is the influence of negative return is more than positive return. Most research focus on the futures and spot goods,and takes conditional variance as volatility. We want to use IV as unbiased estimator of volatility in the future, and reflect the investor’s expectation. We chose 29 call options in English, and use EGARCH (1,1) model to explore the asymmetric effect of volatility over 2000/1/25-2003/12/31 period. After confirming the asymmetric effect of volatility, we use Pooled OLS Model, Static Panel Data Model, and Dynamic Panel Data Model to discuss the relationship between firm scale, debt ratio, and asymmetric effect.
The funding of the paper are:
(a) There is certainly the existence of asymmetric effect in 29 sample firms.
(b) Pooled OLS Model may result wrong conclusions. There is a significantly positive relationship between firm scale and asymmetric effect. And there is a less significantly negative relationship between debt ratio and asymmetric effect. The result doesn’t consist with KS, and doesn’t support Black’s leverage effect.
(c) To avoid the error from Pooled OLS Model, we use Static Panel Data Model to analyze the relationship with firm scale, debt ratio, and asymmetric effect. Asymmetric effect is significantly positively related to firm scale with single corporate effect (fixed effect) and single time effect (random effect). And asymmetric effect is less significantly positively impacted by firm scale if we chose corporate effect and time effect simultaneously. Asymmetric effect is significantly positively related to debt ratio with single corporate effect (fixed effect), and is less significantly positively related to debt ratio with corporate effect and time effect simultaneously. The coefficient is -0.000 (less significantly) of debt ratio with single time effect. The result doesn’t consist with KS, and doesn’t support Black’s leverage effect.
(d) For showing capital market’s memory and adjustability, we use Dynamic Panel Data Model to analyze the problem. Asymmetric effect is significantly positively impacted by firm scale and debt ration in one-step model and two-step model. The result consists with KS, and supports Black’s leverage effect. The coefficient of lagged term is between 0 and -1 (less significantly) may be come from the real asymmetric effect is more than investor’s expectancy, and investors my have overreaction in capital market.
en_US
dc.description.tableofcontents 第壹章 緒論---------------------------------------1
第一節 研究動機------------------------------1
第二節 研究目的----------------------------2
第三節 研究範圍與對象----------------------------------4
第四節 研究架構與流程------------------------------5
第貳章 文獻探討-------------------------------------7
第一節 波動度不對稱效果----------------------7
第二節 波動度不對稱效果之解釋原因-----------------------8
第三節 波動度不對稱模型-----------------------------11
第四節 動態的時間序模型-----------------------------13
第參章 研究方法--------------------------------------14
第一節 波動度不對稱模型估計-----------------------------15
第二節 靜態Panel Data模型----------------------------18
第三節 GMM應用於動態Panel Data模型----------------------24
第肆章 實證結果分析-----------------------------25
第一節資料來源與處理---------------------------25
第二節個股選擇權隱含波動度不對稱之效果--------------27
第三節 隱含波動度與公司財務槓桿、公司規模之關係-----------33
第伍章 研究結論與建議------------------------------------53
第一節 研究結論-------------------------------------53
第二節 研究限制與建議-----------------------------------54
附錄一 動態模型的經濟意涵--------------------------------56
附錄二 GMM與動態Panel Data模型之推導過程----------------58
參考文獻-----------------------------------------63



















表 目 錄
表4-1二十九家英國個股選擇權公司-----------------------------25
表 4-2 替換後EGARCH(1,1)之迴歸結果(2000/1/25~2003/12/31)----- 31
表 4-3 Pooled OLS模型之實證結果--------------------------------34
表 4-4 替換後EGARCH(1,1)之迴歸結果(2000/1/25~2000/12/31)----- 37
表 4-5 替換後EGARCH(1,1)之迴歸結果(2001/1/1~2001/12/31)----- 39
表 4-6 替換後EGARCH(1,1)之迴歸結果(2002/1/1~2002/12/31)----- 41
表 4-7 替換後EGARCH(1,1)之迴歸結果(2003/1/1~2003/12/31)----- 43
表4-8 各年γ值平均(2000~2003)---------------------------44
表4-9 固定效果模型與隨機效果之係數估計-----------------48
表 4-10 Hausman Test結果表---------------------------------- 48
表 4-11 Pooled OLS模型與靜態Panel Data 模型比較表------------49
表 4-12 動態Panel Data模型實證結果表──--------------------- 52

圖 目 錄
圖1-1 研究架構流程圖-----------------------------------6
zh_TW
dc.format.extent 44631 bytes-
dc.format.extent 70977 bytes-
dc.format.extent 83140 bytes-
dc.format.extent 64674 bytes-
dc.format.extent 117218 bytes-
dc.format.extent 122168 bytes-
dc.format.extent 143906 bytes-
dc.format.extent 263825 bytes-
dc.format.extent 79374 bytes-
dc.format.extent 131927 bytes-
dc.format.extent 126020 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0923570011en_US
dc.subject (關鍵詞) 不對稱效果zh_TW
dc.subject (關鍵詞) 動態縱橫資料zh_TW
dc.title (題名) 企業財務槓桿效果之再探討:動態 Panel Data 方法之應用zh_TW
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 一、 中文部分(依作者姓氏排序)zh_TW
dc.relation.reference (參考文獻) 周弘敏, “個股選擇權之隱含波動度不對稱效果決定因素之探討─以Panel Data模型分析”,政治大學財務管理研究所未出版碩士論文,民國九十二年六月。zh_TW
dc.relation.reference (參考文獻) 黃淑娟, “影響台灣地區產險公司現金持有之決定因素:動態現金持有模型之實證研究”,真理大學管理科學研究所未出版碩士論文,民國九十二年六月。zh_TW
dc.relation.reference (參考文獻) 楊奕農,時間序列分析:經濟與財務上應用,民國九十二年,雙葉書廊。zh_TW
dc.relation.reference (參考文獻) 劉威漢,財金風險管理理論、應用與發展趨勢,民國九十三年,智勝文化事業。zh_TW
dc.relation.reference (參考文獻) 二、 英文部分(依作者姓氏排序)zh_TW
dc.relation.reference (參考文獻) Arellano, M. and S. Bond, (1991), “Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations”, The Review of Economic Studies, Vol. 58, P277-297.zh_TW
dc.relation.reference (參考文獻) Arellano, M. and O. Bover, (1995), ”Another look at the instrumental variables estimation of error-component models”, Journal of Econometrics , Vol. 68, P29-51zh_TW
dc.relation.reference (參考文獻) Bessembinder, H. and P. J. Swguin, (1993), ”Price Volatility, Trading Volume, and Market Depth: Evidence from Futures Markets”, Journal of Financial andzh_TW
dc.relation.reference (參考文獻) Quantitative Analysis, Vol. 28, P21-39.zh_TW
dc.relation.reference (參考文獻) Black, F. (1976), “Studies of Stock, Price Volatility Changes”, Proceedings of thezh_TW
dc.relation.reference (參考文獻) 1976 Meetings of the Business and Economics Statistics Section, American Statistical Association, P177-181.zh_TW
dc.relation.reference (參考文獻) Blair, B., S. H. Poon, and S. J. Taylor, (2002) “Asymmetric and Crash Effects in Stock Volatility for the S&P 100 Index and Its Constituents”, Applied Financial Economics, Vol. 12, P319-329.zh_TW
dc.relation.reference (參考文獻) Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroscedasticity”, Journal of Econometrics, Vol. 31, P307-327.zh_TW
dc.relation.reference (參考文獻) Breusch, T., and A. Pagan. (1980), “The LM Test and Its Applications to Model Specification in Econometrics”, Review of Economic Studies, Vol. 47, P239-254.zh_TW
dc.relation.reference (參考文獻) Braun, P. A, D.B. Nelson, and A. M. Sunier (1995), “Good News, Bad News, Volatility, and Betas”, Journal of Finance, Vol.50, P1575-1603.zh_TW
dc.relation.reference (參考文獻) Cagan, P. (1956), “The Monetary dynamics of Hyperinflation,” in M. Friedman (ed.), Studies in the Quantity Theory of Money, Chicago: University Of Chicago Press, P25-117.zh_TW
dc.relation.reference (參考文獻) Campbell, J. Y. and L. Hentschel, (1992), “No News is Good News:An Asymmetric Model of Changing Volatility in Stock Returns”, Journal of Financial Economics, Vol. 31, P281-318.zh_TW
dc.relation.reference (參考文獻) Cheung, Y. W. and Ng, L. K. (1992), “Stock Price Dynamics and Firm Size: An Empirical Investigation”, Journal of Finance, Vol. 48, P1985-1997.zh_TW
dc.relation.reference (參考文獻) Christie, A. (1982), “The Stochastic Behavior of Common Stock Variance: Value, Leverage and Interest Rate Effects”, Journal of Financial Economics, Vol. 10,zh_TW
dc.relation.reference (參考文獻) P407-432.zh_TW
dc.relation.reference (參考文獻) Davidson, W. N., J. K. Kim, E. Ors, and A. Szakmary, (2001), “Using Implied Volatility on Options to Measure the Relation Between Asset Returns and Variability”,Journal of Banking & Finance, Vol. 25, P1245-1269.zh_TW
dc.relation.reference (參考文獻) Duffee, G. R. (1995), “Stock Returns and Volatility: A Firm- Level Analysis”, Journal of Financial Economics, Vol. 37, P399-420.zh_TW
dc.relation.reference (參考文獻) Engle, R. F. (1990), “Discussion: Stock Market Volatility and the Crash of ’87”, Review of Financial Studies, Vol. 3, P103-106.zh_TW
dc.relation.reference (參考文獻) Engle, R. F. (1982), “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of UK Inflation”, Econometrica, Vol. 50, P987-1008.zh_TW
dc.relation.reference (參考文獻) Engle, R. F. and V. K. Ng (1993), “Measuring and Testing the Impact of News on Volatility”, Journal of Finance, Vol. 48, P1749-1778.zh_TW
dc.relation.reference (參考文獻) Figlewski, S. and X. Wang (2000), “IS the “Leverage Effect“ a Leverage Effect?”, Working Paper, New York University, Stern School of Business.zh_TW
dc.relation.reference (參考文獻) Flannery, M. J. (1981), “Market interest rates and commercial bank profitability:An empirical investigation”, Journal of Finance, Vol. 36, P1085-1101.zh_TW
dc.relation.reference (參考文獻) Flannery, M. J. (1983), “Interest rates and banks profitability:Additional evidence”, Journal of Money,Credit and Banking, Vol. 15, P355-362.zh_TW
dc.relation.reference (參考文獻) Fleming, J. (1998), “The Quality of Market Volatility Forecasts Implied by S&P 100 Index Option Prices”, Journal of Empirical Finance, Vol. 5, P317-345.zh_TW
dc.relation.reference (參考文獻) Fleming, J., Ostdiek, B., and Whaley, R. E. (1995), “Predicting Stock Market Volatility: A New Measure”, Journal of Futures Markets, Vol. 15, P265-302.zh_TW
dc.relation.reference (參考文獻) French, R. K., G. W. Schwert, and R. F. Stambaugh, (1987), “Expected Stock Returnszh_TW
dc.relation.reference (參考文獻) and Volatility,” Journal of Financial Economics, Vol. 19, P3-29.zh_TW
dc.relation.reference (參考文獻) Gallant, A. R., P. E. Rossi, and G. Tauchen, (1992), “Stock Prices and Volume”, The Review of Financial Studies, Vol. 5, P199-242.zh_TW
dc.relation.reference (參考文獻) Glosten, L. R., R. Jagannathan, and D. E. Runkle, (1993), “On the Relation Between the Expected Value and Volatility of the Nominal Excess Return on Stocks”, Journalzh_TW
dc.relation.reference (參考文獻) of Finance, Vol. 48, P1779-1801.zh_TW
dc.relation.reference (參考文獻) Greene, W. H. (2000), Econometric Analysis, Fourth Edition.zh_TW
dc.relation.reference (參考文獻) Hansen, L.P. (1982),“Large Sample Properties of Generalized Method of Moments Estimators”, Econometrica, Vol. 50, P1024-54.zh_TW
dc.relation.reference (參考文獻) Johnston, J. and Dinardo, J. (1997), Econometric Methods, Fourth Edition.zh_TW
dc.relation.reference (參考文獻) Jorion, Philippe, (1995), “Predicting Volatility in the Foreign Exchange Market”, Journal of Finance, Vol. 2, P507-528.zh_TW
dc.relation.reference (參考文獻) Koutmos, G. (1998), “Asymmetries in the Conditional Mean and the Conditional Variance: Evidence From Nine Stock Markets”, Journal of Economics and Business, Vol. 50, P277-290.zh_TW
dc.relation.reference (參考文獻) Koutmos, G. and G.G. Booth, (2002), “Asymmetric Volatility Transmission in International Stock Markets”, Journal of International Money and Finance, Vol. 14, P747-762.zh_TW
dc.relation.reference (參考文獻) Koutmos, G. and Saidi, R. (1995), “The Leverage Effect in Individual Stocks and the Debt to Equity Ratio”, Journal of Business Finance and Accounting, Vol. 22,zh_TW
dc.relation.reference (參考文獻) P1063-1075.zh_TW
dc.relation.reference (參考文獻) Longin, F. and Solnik, B. (1995), “Is the Correlation in International Equity Returnszh_TW
dc.relation.reference (參考文獻) Constant: 1960-1990?”, Journal of International Money and Finance, Vol. 14, P3-26. zh_TW
dc.relation.reference (參考文獻) Nelson, D. (1991), “Conditional Heteroskedasticity in Asset Returns: A Newzh_TW
dc.relation.reference (參考文獻) Approach,” Econometrica, Vol. 59, P347-370.zh_TW
dc.relation.reference (參考文獻) Nam Kiseok, Chong Soo Pyun, and Stephen L. Avard, (2001),” Asymmetric reverting behavior of short-horizon stock returns: an evidence of stock market overreaction”, Journal of Banking & Finance Vol. 25, P807-824.zh_TW
dc.relation.reference (參考文獻) Rabemananjara, R. and J. M. Zakoian, (1993), “Threshold ARCH Models and Asymmetries in Volatility”, Journal of Applied Econometrics, Vol. 8, P31-49.zh_TW
dc.relation.reference (參考文獻) Sargan, J. D., (1958), “The Estimation of Economic Relationships Using Instrumental Variables”, Econometrica, Vol. 26, P393-415.zh_TW
dc.relation.reference (參考文獻) Schwert, G. W. (1989), “Why Does Stock Market Volatility Change Over Time?”, Journal of Finance, Vol. 44, P1115-1153.zh_TW
dc.relation.reference (參考文獻) Schwert, G. W. (1990), “Stock Volatility and the Crash of ’87”, Review of Financial Studies, Vol. 3, P77-102.zh_TW
dc.relation.reference (參考文獻) Simon, D. P. (1997), “Implied Volatility Asymmetries in Treasury Bond Futures Options”, Journal of Futures Markets, Vol. 17, P873-885.zh_TW
dc.relation.reference (參考文獻) Zakoian, J.M. (1994), “Threshold Heteroskedastic Models”, Journal of Economic Dynamics and Control, Vol. 18, P931-955.zh_TW