dc.contributor.advisor | 蔡政憲 | zh_TW |
dc.contributor.author (Authors) | 劉婉玉 | zh_TW |
dc.creator (作者) | 劉婉玉 | zh_TW |
dc.date (日期) | 2005 | en_US |
dc.date.accessioned | 2009-09-18 | - |
dc.date.available | 2009-09-18 | - |
dc.date.issued (上傳時間) | 2009-09-18 | - |
dc.identifier (Other Identifiers) | G0093358007 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/34124 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 風險管理與保險研究所 | zh_TW |
dc.description (描述) | 93358007 | zh_TW |
dc.description (描述) | 94 | zh_TW |
dc.description.abstract (摘要) | 本文利用模擬最適化(Simulation Optimization)的技術,來找出適合投資人之最佳資產配置。模擬最適化係為一種將決策變數輸入而使其反應變數得到最佳化結果之技術,在本篇中,決策變數為各種投資標的之資產配置,而反應變數則為投資結果之預期報酬與標準差,模擬最適化可視為一種在可行範圍內尋求最佳解之過程。本篇中模擬最適化之方法係採演化策略法,最適化問題則為具放空限制之多期架構。我們亦進一步與各種傳統的投資保險策略比較,包括買入持有策略(Buy-and-Hold)、固定比例策略(Constant Mix)、固定比例投資保險策略(Constant Proportion Portfolio Insurance)及時間不變性投資組合保險策略(Time-Invariant Portfolio Protection),以驗證模擬最適化的有效性,並以多種評估指標來衡量各種策略績效之優劣。由實證結果發現,利用模擬最適化求解出每月的最適資產配置,雖然造成每期因資金配置比例變動而提高波動性,另一方面卻能大幅的增加報酬率。整體而言,模擬最適化技術的確能夠有效提升投資績效,使得最終財富增加,並且得到較大的夏普指數及每單位風險下較高的報酬。 | zh_TW |
dc.description.abstract (摘要) | This paper applied simulation optimization technique to search for the optimal asset allocation. Simulation optimization is the process of determining the values of the decision variables that optimize the values of the stochastic response variable generated from a simulation model. The decision variables in our case are the allocations of many kinds of assets. The response variable is a function of the expected wealth and the associated risk. The simulation optimization problem can be characterized as a stochastic search over a feasible exploration region. The method we applied is the evolution strategies and the optimization problem is formulated as a multi-period one with short-sale constraints. In order to verify the effectiveness of simulation optimization, we compared the resulting asset allocation with allocations obtaining using traditional portfolio insurance strategies including Buy-and-Hold, Constant Mix, Constant Proportion Portfolio Insurance, and Time-Invariant Portfolio Protection. We also used many indexes to evaluate performance of all kinds of strategies in this paper.Our empirical results indicated that using simulation optimization to search for the best asset allocation resulted in large volatilities, however, it significantly enhanced rate of return. As a whole, applying simulation optimization indeed gets the better performance, increases the final wealth, makes Sharpe Index large, and obtains the higher return under per unit risk. | en_US |
dc.description.tableofcontents | Content1. INTRODUCTION 12. SIMULATION OPTIMIZATION MODEL 4 2.1 Simulation Model 4 2.2 The Optimization Problem 6 2.3 Evolution Strategies 63. METHODOLOGY 11 3.1 Data and Performance Evaluation Criterion 11 3.2 Parameters Input and Resulting Allocation of Simulation Optimization 13 3.3 Alternative Asset Allocation Strategies 23 3.3.1 Buy and Hold 23 3.3.2 Constant Mix 25 3.3.3 Constant Proportion Portfolio Insurance 26 3.3.4 Time Invariant Portfolio Protection 274. COMPARISON RESULTS 29 4.1 Comparison Set 1 29 4.2 Comparison Set 2 315. CONCLUSIONS 35REFERENCESAPPENDIX | zh_TW |
dc.format.extent | 45522 bytes | - |
dc.format.extent | 91230 bytes | - |
dc.format.extent | 67261 bytes | - |
dc.format.extent | 12801 bytes | - |
dc.format.extent | 19077 bytes | - |
dc.format.extent | 220566 bytes | - |
dc.format.extent | 142176 bytes | - |
dc.format.extent | 44595 bytes | - |
dc.format.extent | 14839 bytes | - |
dc.format.extent | 103143 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0093358007 | en_US |
dc.subject (關鍵詞) | 模擬最適化 | zh_TW |
dc.subject (關鍵詞) | 資產配置 | zh_TW |
dc.subject (關鍵詞) | 演化策略 | zh_TW |
dc.subject (關鍵詞) | 投資組合保險策略 | zh_TW |
dc.subject (關鍵詞) | Simulation Optimization | en_US |
dc.subject (關鍵詞) | Asset Allocation | en_US |
dc.subject (關鍵詞) | Evolutionary Strategies | en_US |
dc.subject (關鍵詞) | Portfolio Insurance Strategies | en_US |
dc.title (題名) | 模擬最適化運用於資產配置之驗證 | zh_TW |
dc.title (題名) | The Effectiveness of the Asset Allocation Using the Technique of Simulation Optimization | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | REFERENCES | zh_TW |
dc.relation.reference (參考文獻) | Back, T. and H. P. Schwefel, 1993, An Overview of Evolutionary Algorithms for Parameter Optimization, Evolutionary Computation, 1: 1-23. | zh_TW |
dc.relation.reference (參考文獻) | Bertrand, P. and J. L. Prigent, 2002, Portfolio Insurance Strategies: OBPI versus CPPI, working paper. | zh_TW |
dc.relation.reference (參考文獻) | Black, F. and R. Jones, 1987, Simplifying Portfolio Insurance, The Journal of | zh_TW |
dc.relation.reference (參考文獻) | Portfolio Management, 48-51. | zh_TW |
dc.relation.reference (參考文獻) | Brennan, M. J. and E. S. Schwartz, 1988, Time Invariant Portfolio | zh_TW |
dc.relation.reference (參考文獻) | Insurance Strategies, The Journal of Finance, 283-299 | zh_TW |
dc.relation.reference (參考文獻) | Choie, K. S. and E. J. Seff, 1989, TIPP: Insurance without Complexity : | zh_TW |
dc.relation.reference (參考文獻) | Comment, Journal of Portfolio Management, 107-108. | zh_TW |
dc.relation.reference (參考文獻) | Duan, J. C, 1994, Maximum Likelihood Estimation Using Price Data of The Derivative Contract, Mathematical Finance, Vol. 4, No.2, 155-167 | zh_TW |
dc.relation.reference (參考文獻) | Estep, T. and M. Kritzman, 1988, TIPP: Insurance without Complexity, Journal | zh_TW |
dc.relation.reference (參考文獻) | of Portfolio Management, 38-42. | zh_TW |
dc.relation.reference (參考文獻) | Keys, A. C. and L. P. Rees, 2004, A Sequential-Design Metamodeling Strategy for Simulation Optimization, Computers and Operations Research, 31: 1911-1932. | zh_TW |
dc.relation.reference (參考文獻) | Markowitz, H. M., 1952, Portfolio Selection, Journal of Finance, 7: 77-91. | zh_TW |
dc.relation.reference (參考文獻) | Merton, R. C., 1971, Optimum Consumption and Portfolio Rules in a Continuous Time Model, Journal of Economic Theory, 3: 373-413 | zh_TW |
dc.relation.reference (參考文獻) | Perold, A. F. and W. F. Sharpe, 1988, Dynamic Strategies for Asset Allocation, Financial Analyst Journal, January-February, 16-27. | zh_TW |
dc.relation.reference (參考文獻) | Sharpe, W. F., 1964, Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk, Journal of Finance, 19: 425-442. | zh_TW |
dc.relation.reference (參考文獻) | Tekin, E. and I. Sabuncuoglu, 2004, Simulation Optimization: A Comprehensive Review on Theory and Applications, IIE Transactions, 36: 1067-1081. | zh_TW |
dc.relation.reference (參考文獻) | Yu, T., C. Tsai, and C. Chen, 2006, Combing Dynamic Financial Analysis with Simulation Optimization to Solve the Asset Allocation Problem of the Property-Casualty Insurer, working paper. | zh_TW |