學術產出-學位論文

題名 模擬最適化運用於資產配置之驗證
The Effectiveness of the Asset Allocation Using the Technique of Simulation Optimization
作者 劉婉玉
貢獻者 蔡政憲
劉婉玉
關鍵詞 模擬最適化
資產配置
演化策略
投資組合保險策略
Simulation Optimization
Asset Allocation
Evolutionary Strategies
Portfolio Insurance Strategies
日期 2005
上傳時間 2009-09-18
摘要 本文利用模擬最適化(Simulation Optimization)的技術,來找出適合投資人之最佳資產配置。模擬最適化係為一種將決策變數輸入而使其反應變數得到最佳化結果之技術,在本篇中,決策變數為各種投資標的之資產配置,而反應變數則為投資結果之預期報酬與標準差,模擬最適化可視為一種在可行範圍內尋求最佳解之過程。本篇中模擬最適化之方法係採演化策略法,最適化問題則為具放空限制之多期架構。我們亦進一步與各種傳統的投資保險策略比較,包括買入持有策略(Buy-and-Hold)、固定比例策略(Constant Mix)、固定比例投資保險策略(Constant Proportion Portfolio Insurance)及時間不變性投資組合保險策略(Time-Invariant Portfolio Protection),以驗證模擬最適化的有效性,並以多種評估指標來衡量各種策略績效之優劣。
由實證結果發現,利用模擬最適化求解出每月的最適資產配置,雖然造成每期因資金配置比例變動而提高波動性,另一方面卻能大幅的增加報酬率。整體而言,模擬最適化技術的確能夠有效提升投資績效,使得最終財富增加,並且得到較大的夏普指數及每單位風險下較高的報酬。
This paper applied simulation optimization technique to search for the optimal asset allocation. Simulation optimization is the process of determining the values of the decision variables that optimize the values of the stochastic response variable generated from a simulation model. The decision variables in our case are the allocations of many kinds of assets. The response variable is a function of the expected wealth and the associated risk. The simulation optimization problem can be characterized as a stochastic search over a feasible exploration region. The method we applied is the evolution strategies and the optimization problem is formulated as a multi-period one with short-sale constraints. In order to verify the effectiveness of simulation optimization, we compared the resulting asset allocation with allocations obtaining using traditional portfolio insurance strategies including Buy-and-Hold, Constant Mix, Constant Proportion Portfolio Insurance, and Time-Invariant Portfolio Protection. We also used many indexes to evaluate performance of all kinds of strategies in this paper.
Our empirical results indicated that using simulation optimization to search for the best asset allocation resulted in large volatilities, however, it significantly enhanced rate of return. As a whole, applying simulation optimization indeed gets the better performance, increases the final wealth, makes Sharpe Index large, and obtains the higher return under per unit risk.
參考文獻 REFERENCES
Back, T. and H. P. Schwefel, 1993, An Overview of Evolutionary Algorithms for Parameter Optimization, Evolutionary Computation, 1: 1-23.
Bertrand, P. and J. L. Prigent, 2002, Portfolio Insurance Strategies: OBPI versus CPPI, working paper.
Black, F. and R. Jones, 1987, Simplifying Portfolio Insurance, The Journal of
Portfolio Management, 48-51.
Brennan, M. J. and E. S. Schwartz, 1988, Time Invariant Portfolio
Insurance Strategies, The Journal of Finance, 283-299
Choie, K. S. and E. J. Seff, 1989, TIPP: Insurance without Complexity :
Comment, Journal of Portfolio Management, 107-108.
Duan, J. C, 1994, Maximum Likelihood Estimation Using Price Data of The Derivative Contract, Mathematical Finance, Vol. 4, No.2, 155-167
Estep, T. and M. Kritzman, 1988, TIPP: Insurance without Complexity, Journal
of Portfolio Management, 38-42.
Keys, A. C. and L. P. Rees, 2004, A Sequential-Design Metamodeling Strategy for Simulation Optimization, Computers and Operations Research, 31: 1911-1932.
Markowitz, H. M., 1952, Portfolio Selection, Journal of Finance, 7: 77-91.
Merton, R. C., 1971, Optimum Consumption and Portfolio Rules in a Continuous Time Model, Journal of Economic Theory, 3: 373-413
Perold, A. F. and W. F. Sharpe, 1988, Dynamic Strategies for Asset Allocation, Financial Analyst Journal, January-February, 16-27.
Sharpe, W. F., 1964, Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk, Journal of Finance, 19: 425-442.
Tekin, E. and I. Sabuncuoglu, 2004, Simulation Optimization: A Comprehensive Review on Theory and Applications, IIE Transactions, 36: 1067-1081.
Yu, T., C. Tsai, and C. Chen, 2006, Combing Dynamic Financial Analysis with Simulation Optimization to Solve the Asset Allocation Problem of the Property-Casualty Insurer, working paper.
描述 碩士
國立政治大學
風險管理與保險研究所
93358007
94
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0093358007
資料類型 thesis
dc.contributor.advisor 蔡政憲zh_TW
dc.contributor.author (作者) 劉婉玉zh_TW
dc.creator (作者) 劉婉玉zh_TW
dc.date (日期) 2005en_US
dc.date.accessioned 2009-09-18-
dc.date.available 2009-09-18-
dc.date.issued (上傳時間) 2009-09-18-
dc.identifier (其他 識別碼) G0093358007en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/34124-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 風險管理與保險研究所zh_TW
dc.description (描述) 93358007zh_TW
dc.description (描述) 94zh_TW
dc.description.abstract (摘要) 本文利用模擬最適化(Simulation Optimization)的技術,來找出適合投資人之最佳資產配置。模擬最適化係為一種將決策變數輸入而使其反應變數得到最佳化結果之技術,在本篇中,決策變數為各種投資標的之資產配置,而反應變數則為投資結果之預期報酬與標準差,模擬最適化可視為一種在可行範圍內尋求最佳解之過程。本篇中模擬最適化之方法係採演化策略法,最適化問題則為具放空限制之多期架構。我們亦進一步與各種傳統的投資保險策略比較,包括買入持有策略(Buy-and-Hold)、固定比例策略(Constant Mix)、固定比例投資保險策略(Constant Proportion Portfolio Insurance)及時間不變性投資組合保險策略(Time-Invariant Portfolio Protection),以驗證模擬最適化的有效性,並以多種評估指標來衡量各種策略績效之優劣。
由實證結果發現,利用模擬最適化求解出每月的最適資產配置,雖然造成每期因資金配置比例變動而提高波動性,另一方面卻能大幅的增加報酬率。整體而言,模擬最適化技術的確能夠有效提升投資績效,使得最終財富增加,並且得到較大的夏普指數及每單位風險下較高的報酬。
zh_TW
dc.description.abstract (摘要) This paper applied simulation optimization technique to search for the optimal asset allocation. Simulation optimization is the process of determining the values of the decision variables that optimize the values of the stochastic response variable generated from a simulation model. The decision variables in our case are the allocations of many kinds of assets. The response variable is a function of the expected wealth and the associated risk. The simulation optimization problem can be characterized as a stochastic search over a feasible exploration region. The method we applied is the evolution strategies and the optimization problem is formulated as a multi-period one with short-sale constraints. In order to verify the effectiveness of simulation optimization, we compared the resulting asset allocation with allocations obtaining using traditional portfolio insurance strategies including Buy-and-Hold, Constant Mix, Constant Proportion Portfolio Insurance, and Time-Invariant Portfolio Protection. We also used many indexes to evaluate performance of all kinds of strategies in this paper.
Our empirical results indicated that using simulation optimization to search for the best asset allocation resulted in large volatilities, however, it significantly enhanced rate of return. As a whole, applying simulation optimization indeed gets the better performance, increases the final wealth, makes Sharpe Index large, and obtains the higher return under per unit risk.
en_US
dc.description.tableofcontents Content
1. INTRODUCTION 1
2. SIMULATION OPTIMIZATION MODEL 4
2.1 Simulation Model 4
2.2 The Optimization Problem 6
2.3 Evolution Strategies 6
3. METHODOLOGY 11
3.1 Data and Performance Evaluation Criterion 11
3.2 Parameters Input and Resulting Allocation of Simulation
Optimization 13
3.3 Alternative Asset Allocation Strategies 23
3.3.1 Buy and Hold 23
3.3.2 Constant Mix 25
3.3.3 Constant Proportion Portfolio Insurance 26
3.3.4 Time Invariant Portfolio Protection 27
4. COMPARISON RESULTS 29
4.1 Comparison Set 1 29
4.2 Comparison Set 2 31
5. CONCLUSIONS 35
REFERENCES
APPENDIX
zh_TW
dc.format.extent 45522 bytes-
dc.format.extent 91230 bytes-
dc.format.extent 67261 bytes-
dc.format.extent 12801 bytes-
dc.format.extent 19077 bytes-
dc.format.extent 220566 bytes-
dc.format.extent 142176 bytes-
dc.format.extent 44595 bytes-
dc.format.extent 14839 bytes-
dc.format.extent 103143 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0093358007en_US
dc.subject (關鍵詞) 模擬最適化zh_TW
dc.subject (關鍵詞) 資產配置zh_TW
dc.subject (關鍵詞) 演化策略zh_TW
dc.subject (關鍵詞) 投資組合保險策略zh_TW
dc.subject (關鍵詞) Simulation Optimizationen_US
dc.subject (關鍵詞) Asset Allocationen_US
dc.subject (關鍵詞) Evolutionary Strategiesen_US
dc.subject (關鍵詞) Portfolio Insurance Strategiesen_US
dc.title (題名) 模擬最適化運用於資產配置之驗證zh_TW
dc.title (題名) The Effectiveness of the Asset Allocation Using the Technique of Simulation Optimizationen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) REFERENCESzh_TW
dc.relation.reference (參考文獻) Back, T. and H. P. Schwefel, 1993, An Overview of Evolutionary Algorithms for Parameter Optimization, Evolutionary Computation, 1: 1-23.zh_TW
dc.relation.reference (參考文獻) Bertrand, P. and J. L. Prigent, 2002, Portfolio Insurance Strategies: OBPI versus CPPI, working paper.zh_TW
dc.relation.reference (參考文獻) Black, F. and R. Jones, 1987, Simplifying Portfolio Insurance, The Journal ofzh_TW
dc.relation.reference (參考文獻) Portfolio Management, 48-51.zh_TW
dc.relation.reference (參考文獻) Brennan, M. J. and E. S. Schwartz, 1988, Time Invariant Portfoliozh_TW
dc.relation.reference (參考文獻) Insurance Strategies, The Journal of Finance, 283-299zh_TW
dc.relation.reference (參考文獻) Choie, K. S. and E. J. Seff, 1989, TIPP: Insurance without Complexity :zh_TW
dc.relation.reference (參考文獻) Comment, Journal of Portfolio Management, 107-108.zh_TW
dc.relation.reference (參考文獻) Duan, J. C, 1994, Maximum Likelihood Estimation Using Price Data of The Derivative Contract, Mathematical Finance, Vol. 4, No.2, 155-167zh_TW
dc.relation.reference (參考文獻) Estep, T. and M. Kritzman, 1988, TIPP: Insurance without Complexity, Journalzh_TW
dc.relation.reference (參考文獻) of Portfolio Management, 38-42.zh_TW
dc.relation.reference (參考文獻) Keys, A. C. and L. P. Rees, 2004, A Sequential-Design Metamodeling Strategy for Simulation Optimization, Computers and Operations Research, 31: 1911-1932.zh_TW
dc.relation.reference (參考文獻) Markowitz, H. M., 1952, Portfolio Selection, Journal of Finance, 7: 77-91.zh_TW
dc.relation.reference (參考文獻) Merton, R. C., 1971, Optimum Consumption and Portfolio Rules in a Continuous Time Model, Journal of Economic Theory, 3: 373-413zh_TW
dc.relation.reference (參考文獻) Perold, A. F. and W. F. Sharpe, 1988, Dynamic Strategies for Asset Allocation, Financial Analyst Journal, January-February, 16-27.zh_TW
dc.relation.reference (參考文獻) Sharpe, W. F., 1964, Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk, Journal of Finance, 19: 425-442.zh_TW
dc.relation.reference (參考文獻) Tekin, E. and I. Sabuncuoglu, 2004, Simulation Optimization: A Comprehensive Review on Theory and Applications, IIE Transactions, 36: 1067-1081.zh_TW
dc.relation.reference (參考文獻) Yu, T., C. Tsai, and C. Chen, 2006, Combing Dynamic Financial Analysis with Simulation Optimization to Solve the Asset Allocation Problem of the Property-Casualty Insurer, working paper.zh_TW