Publications-Theses

題名 企業財務危機預警模型之建構-以類神經網路為工具
作者 楊謹瑜
貢獻者 馬秀如
楊謹瑜
關鍵詞 倒傳遞網路
財務危機
公司治理
日期 2007
上傳時間 2009-09-18
摘要 由於財務報表資訊易遭管理當局操縱,因此財務預警模型若僅考慮財務比率變數,即有其限制。本研究因此結合財務比率變數與公司治理變數,以期建構更良好的財務預警模型。此外,本研究使用倒傳遞網路為工具,以避免前述限制,並預期結果顯示綜合採用財務比率及公司治理二類變數,在預測期間短時,所建立的財務預警模型,其錯誤率的確較低。本研究同時發現,樣本公司中的危機公司大多屬於「急速失敗公司」。
Early warning models used to predict financial distresses of corporations confront with limitation, when the model specification consider only financial ratios based on financial statements, because of the possibility of manipulated financial statements. This study intends to construct a early warning model with not only financial ratio variables, but also corporate governance variables. The corporate governance variables may affect the corporation with financial distresses dramatically. This study constructs a new early warning model, considering the two kinds of variables, both financial ratio and corporate governance, and improves the predictability of sample firms of the one-quarter period. The study shows that Back Propagation Neural Network model can learn from the data of failed corporations and a matched group of survivor firms and hence predict the financial distresses. The study also finds the sample failed corporations are more likely to be “acute failure” ones.

Keyword: BPN, Corporate Governance, Financial Distresses.
參考文獻 參考文獻
一、 中文部分
1. 呂紹強, 2000,企業財務危機預警模型之研究-以財務及非財務因素建構,當代會計,第一卷,第一期:p19-40
2. 柯承恩,2000,我國公司監理體系之問題與改進建議(上) (下),會計研究月刊,173期:p74-81;174期:p79-83
3. 郭瓊宜,1994,類神經網路在財務危機預警模式之應用,私立淡江大學管理科學研究所未出版碩士論文。
4. 蔡秋田,1995,運用類神經網路預測上市營運困難之研究,國立成功大學會計研究所未出版碩士論文。
5. 葉怡成,1999,應用類神經網路,台北;儒林圖書有限公司。
6. 葉銀華、李存修與柯承恩,2002,公司治理與評等系統,台北:商智文化。
7. 蘇文娟,1999,台灣上市企業財務危機預測之實證研究,國立東華大學國際經濟研究所未出版碩士論文。
二、 英文部分
1. Altman, E.1968.Financial Ratios, Discriminate Analysis and the Predictions of Corporate Bankruptcy. Journal of Finance(September).23(4). pp. 589-609.
2. Altman, E., G. Marco and F. Varetto.1994.Corporate Distress Doagnosis: Comparisons Using Linear Discriminant Analysis and Neural Networks. Journal of Banking and Finance. pp. 505-529.
3. Beaver, W. H.1966.Financial Ratios as Predictors of Failure. Journal of Accounting Research (Fall).4(3). pp. 71-111.
4. Blum, M. 1974.Failing Company Discriminant Analysis. Journal of Accounting Research (Spring). pp. 1-25.
5. Coats, P. K. and L.F. Fant.1993.Recognizing Financial Distress Patterns Using a Neural Network Tool. Financial Management (Autumn).22(3). pp. 142-155.
6. Daily, C. M. and D.R.Dalton.1994.Bankruptcy and Corporate Governance: The Impact of Board Composition and Structure. Academy of Management Journal. 37(6). pp. 1603-1617.
7. Jensen, M.C. and W.H.Meckling.1976.Theory of the Firm: Managerial Behavior, Agency Costs and Ownership Structure. Journal of Financial Economics .3(4). pp. 305-360.
8. Laitinen. E. K. and T. Laitinen .1980.Cash Management Behavior And Failure Prediction. Journal of Business Finance and Accounting
Research (Sep). pp. 613-630.
9. Lee, K., D. Booth, and P.Alam.2005.A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms. Expert Systems with Applications. 29(1). pp. 1-16.
10. Odom, J.A. and R.Sharda.1990.A Neural Networks for Bankruptcy Prediction. IEEE INNS International Joint Conference on Neural Networks . 2(17-21). pp. 163-168.
11. O’Leary, D.E. 1998. Using neural networks to predict corporate failure. International Journal of Intelligent Systems in Accounting, Finance & Management. Vol. 7. pp. 187-197.
12. Lee, T.S. and Y.H.Yeh.2004.Corporate Governance and Financial Distress : evidence from Taiwan. Corporate Governance and Financial Distress. 12(3). pp. 378-388.
13. Ward, T. J. and B.P. Foster.1996. An Empirical Analysis of Thomas’s Financial Accounting Allocation Fallacy Theory in a Financial Distress Context. Accounting & Business Research. 26(2). pp. 137-152.
描述 碩士
國立政治大學
會計研究所
90353008
96
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0090353008
資料類型 thesis
dc.contributor.advisor 馬秀如zh_TW
dc.contributor.author (Authors) 楊謹瑜zh_TW
dc.creator (作者) 楊謹瑜zh_TW
dc.date (日期) 2007en_US
dc.date.accessioned 2009-09-18-
dc.date.available 2009-09-18-
dc.date.issued (上傳時間) 2009-09-18-
dc.identifier (Other Identifiers) G0090353008en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/34184-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 會計研究所zh_TW
dc.description (描述) 90353008zh_TW
dc.description (描述) 96zh_TW
dc.description.abstract (摘要) 由於財務報表資訊易遭管理當局操縱,因此財務預警模型若僅考慮財務比率變數,即有其限制。本研究因此結合財務比率變數與公司治理變數,以期建構更良好的財務預警模型。此外,本研究使用倒傳遞網路為工具,以避免前述限制,並預期結果顯示綜合採用財務比率及公司治理二類變數,在預測期間短時,所建立的財務預警模型,其錯誤率的確較低。本研究同時發現,樣本公司中的危機公司大多屬於「急速失敗公司」。zh_TW
dc.description.abstract (摘要) Early warning models used to predict financial distresses of corporations confront with limitation, when the model specification consider only financial ratios based on financial statements, because of the possibility of manipulated financial statements. This study intends to construct a early warning model with not only financial ratio variables, but also corporate governance variables. The corporate governance variables may affect the corporation with financial distresses dramatically. This study constructs a new early warning model, considering the two kinds of variables, both financial ratio and corporate governance, and improves the predictability of sample firms of the one-quarter period. The study shows that Back Propagation Neural Network model can learn from the data of failed corporations and a matched group of survivor firms and hence predict the financial distresses. The study also finds the sample failed corporations are more likely to be “acute failure” ones.

Keyword: BPN, Corporate Governance, Financial Distresses.
en_US
dc.description.tableofcontents 目錄
第一章 概論 1
第一節 研究背景與動機 1
第二節 研究問題 4
第三節 理論架構 5
第四節 研究架構 6
第二章 文獻探討 7
第一節 會計相關文獻 7
第二節 類神經網路相關文獻 16
第三節 對本研究之啟示 24
第三章 研究設計及研究方法 25
第一節 財務危機之定義 25
第二節 研究對象及期間 27
第三節 變數定義 31
第四節 BPN模型設計 36
第五節 研究步驟 37
第四章 實證分析及結果 38
第一節 研究問題一 38
第二節 研究問題二 40
第三節 研究問題三 45
第五章 結論與建議 48
第一節 結論 48
第二節 建議 50
第三節 研究限制 51
第四節 對後續研究之建議 52
參考文獻 53
zh_TW
dc.format.extent 72358 bytes-
dc.format.extent 97611 bytes-
dc.format.extent 64317 bytes-
dc.format.extent 13321 bytes-
dc.format.extent 125675 bytes-
dc.format.extent 217630 bytes-
dc.format.extent 579870 bytes-
dc.format.extent 257474 bytes-
dc.format.extent 226195 bytes-
dc.format.extent 212651 bytes-
dc.format.extent 166973 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0090353008en_US
dc.subject (關鍵詞) 倒傳遞網路zh_TW
dc.subject (關鍵詞) 財務危機zh_TW
dc.subject (關鍵詞) 公司治理zh_TW
dc.title (題名) 企業財務危機預警模型之建構-以類神經網路為工具zh_TW
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 參考文獻zh_TW
dc.relation.reference (參考文獻) 一、 中文部分zh_TW
dc.relation.reference (參考文獻) 1. 呂紹強, 2000,企業財務危機預警模型之研究-以財務及非財務因素建構,當代會計,第一卷,第一期:p19-40zh_TW
dc.relation.reference (參考文獻) 2. 柯承恩,2000,我國公司監理體系之問題與改進建議(上) (下),會計研究月刊,173期:p74-81;174期:p79-83zh_TW
dc.relation.reference (參考文獻) 3. 郭瓊宜,1994,類神經網路在財務危機預警模式之應用,私立淡江大學管理科學研究所未出版碩士論文。zh_TW
dc.relation.reference (參考文獻) 4. 蔡秋田,1995,運用類神經網路預測上市營運困難之研究,國立成功大學會計研究所未出版碩士論文。zh_TW
dc.relation.reference (參考文獻) 5. 葉怡成,1999,應用類神經網路,台北;儒林圖書有限公司。zh_TW
dc.relation.reference (參考文獻) 6. 葉銀華、李存修與柯承恩,2002,公司治理與評等系統,台北:商智文化。zh_TW
dc.relation.reference (參考文獻) 7. 蘇文娟,1999,台灣上市企業財務危機預測之實證研究,國立東華大學國際經濟研究所未出版碩士論文。zh_TW
dc.relation.reference (參考文獻) 二、 英文部分zh_TW
dc.relation.reference (參考文獻) 1. Altman, E.1968.Financial Ratios, Discriminate Analysis and the Predictions of Corporate Bankruptcy. Journal of Finance(September).23(4). pp. 589-609.zh_TW
dc.relation.reference (參考文獻) 2. Altman, E., G. Marco and F. Varetto.1994.Corporate Distress Doagnosis: Comparisons Using Linear Discriminant Analysis and Neural Networks. Journal of Banking and Finance. pp. 505-529.zh_TW
dc.relation.reference (參考文獻) 3. Beaver, W. H.1966.Financial Ratios as Predictors of Failure. Journal of Accounting Research (Fall).4(3). pp. 71-111.zh_TW
dc.relation.reference (參考文獻) 4. Blum, M. 1974.Failing Company Discriminant Analysis. Journal of Accounting Research (Spring). pp. 1-25.zh_TW
dc.relation.reference (參考文獻) 5. Coats, P. K. and L.F. Fant.1993.Recognizing Financial Distress Patterns Using a Neural Network Tool. Financial Management (Autumn).22(3). pp. 142-155.zh_TW
dc.relation.reference (參考文獻) 6. Daily, C. M. and D.R.Dalton.1994.Bankruptcy and Corporate Governance: The Impact of Board Composition and Structure. Academy of Management Journal. 37(6). pp. 1603-1617.zh_TW
dc.relation.reference (參考文獻) 7. Jensen, M.C. and W.H.Meckling.1976.Theory of the Firm: Managerial Behavior, Agency Costs and Ownership Structure. Journal of Financial Economics .3(4). pp. 305-360.zh_TW
dc.relation.reference (參考文獻) 8. Laitinen. E. K. and T. Laitinen .1980.Cash Management Behavior And Failure Prediction. Journal of Business Finance and Accountingzh_TW
dc.relation.reference (參考文獻) Research (Sep). pp. 613-630.zh_TW
dc.relation.reference (參考文獻) 9. Lee, K., D. Booth, and P.Alam.2005.A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms. Expert Systems with Applications. 29(1). pp. 1-16.zh_TW
dc.relation.reference (參考文獻) 10. Odom, J.A. and R.Sharda.1990.A Neural Networks for Bankruptcy Prediction. IEEE INNS International Joint Conference on Neural Networks . 2(17-21). pp. 163-168.zh_TW
dc.relation.reference (參考文獻) 11. O’Leary, D.E. 1998. Using neural networks to predict corporate failure. International Journal of Intelligent Systems in Accounting, Finance & Management. Vol. 7. pp. 187-197.zh_TW
dc.relation.reference (參考文獻) 12. Lee, T.S. and Y.H.Yeh.2004.Corporate Governance and Financial Distress : evidence from Taiwan. Corporate Governance and Financial Distress. 12(3). pp. 378-388.zh_TW
dc.relation.reference (參考文獻) 13. Ward, T. J. and B.P. Foster.1996. An Empirical Analysis of Thomas’s Financial Accounting Allocation Fallacy Theory in a Financial Distress Context. Accounting & Business Research. 26(2). pp. 137-152.zh_TW