學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 單元製造系統之人力配置策略研究
A Study of Operator A ssignments Flexibility within and betwe en Cellular Manufacturing Systems
作者 張毓欣
貢獻者 洪叔民
張毓欣
關鍵詞 單元製造系統
人力配置策略
人力資源有限系統
工作量平衡程度
工作量共享程度
Cellular Manufacturing Systems
Labor Assignment
Labor Limited Systems
Workload Balancing
Workload Sharing
日期 2005
上傳時間 18-Sep-2009 13:43:32 (UTC+8)
摘要   由於少量多樣的生產趨勢,單元製造系統(Cellular Manufacturing Systems)已成為目前製造業的重點之一。在單元製造系統中,具有多種技能的員工是必備的條件,如何有效的配置人力策略即為本研究的重點。人力配置策略包含了指定式(由單一操作員負責某件工作)、共享式(由兩名或兩名以上操作員共同負責某件工作)及混合式人力配置策略(同時使用指定式和共享式兩種策略),其中,共享式和混合式的人力配置策略可稱為彈性人力配置策略。要使用彈性人力配置策略,需要有人力彈性(Labor Flexibility)。
  所謂的人力彈性在單元製造系統可分為兩個方向:(1)單元間的人力彈性(Inter-Cell Labor Flexibility),即不同單元間的轉換能力,(2)單元內的人力彈性(Intra-Cell Labor Flexibility),即單元內不同工作間的轉換能力。本研究分為兩個主要部份,分別探討在單元間採用彈性人力配置策略和在單元內採用彈性人力配置策略對於工作量平衡程度、工作量共享程度和績效表現的影響。
  根據研究結果,在單元內採用彈性的人力配置策略對於操作員間的工作量平衡和績效表現皆有直接且正向影響,但隨著操作員數目的減少,彈性的人力配置策略對於績效表現之影響減弱、甚至變為負向效果;在單元間採用彈性的人力配置策略之效果和在單元內採用彈性的人力配置策略相似,對操作員間的工作量平衡和績效表現亦有直接且正向影響,且隨著單元數增加,在單元間採用彈性的人力配置策略對績效表現的影響增強。本研究之結果可做為運用彈性的人力配置策略以及規劃交互訓練時的參考方向,並可用此架構來預測績效改變。
The object of the research is to study agile labor assignments in cellular manufacturing systems by intra-cell and inter-cell operator’s mobility. There are three labor assignments strategies including dedicated (only one operator is responsible for a work), shared (two or more than two operators are responsible for a work), and combined assignment (using both of dedicated assignment and shared assignment). Different assignments lead to different workload balancing, workload sharing and performance.
The research builds a simulate framework which includes operators’ moving rule, proposition of empirical study and index of workload balancing and workload sharing. According the result of research, applying intra-cell operator’s mobility can improve operator’s workload balancing and performance. Nevertheless, the relationship of intra-cell operator’s mobility and performance would decrease with decreasing of labor limited. The impact of inter-cell operator’s mobility is similar to intra-cell operator’s mobility, but it would increase with increase of complexity. The simulate framework which pass through the testing can use in an actual company case, provide a direction of how to use labor assignments, and forecast the impact of using agile labor assignment.
參考文獻 Agarwal, A., & Sarkis, J., (1998). A review and analysis of comparative performance studies on functional and cellular manufacturing layouts. Computer & Industrial Engineering, 34(1), 77-89.
Ang, C. L., & Willey, P. C. T., (1984). A comparative study of the performance of pure and hybrid group technology manufacturing systems using computer simulation techniques. International Journal of Production Research, 22(2), 193-233.
Askin, R. G., & Chen, J., (2006). Dynamic task assignment for throughput maximization with worksharing. European Journal of Operational Research, 168(3), 853-869.
Bokhorst, L. A. C., Slomp, J., & Gaalman, G. J. C., (2004). On the who-rule in Dual Resource Constrained (DRC) manufacturing systems. International Journal of Production Research, 42(23), 5049-5074.
Brusco, M. J., & Johns, T. R., (1998). Staffing a multiskilled workforce with varying levels of productivity: An analysis of cross-training policies. Decision Sciences, 29(2), 499-515.
Burgess, A.G., Vollmann, T.E., & Morgan, I., (1993). Cellular manufacturing: its impact on the total factory. International Journal of Production Research, 31(8), 2059-2077.
Cesani, V. I., & Steudel, H. J., (2005). A study of labor assignment flexibility in cellular manufacturing systems. Computer & Industrial Engineering, 48(3), 571-591.
Eckstein, A. L. H., & Rohleder, T. R., (1998). Incorporating human resources in group technology / cellular manufacturing. International Journal of Production Research, 36(4), 1199-1222.
Felan, J. T., & Fry, T. D., (2001). Multi-level heterogeneous worker flexibility in a dual resource constrained (DRC) job-shop. International Journal of Production Research, 39(14), 3041-3059.
Flynn, B. B., (1987). Repetitive lots: the use of a sequence dependent set-up time scheduling procedure in grouping technology and traditional shops. European Journal of Operational Management, 7(2), 203-216.
Flynn, B. B., & Jacobs, F. R., (1986). A simulation comparison of group technology with traditional job shop manufacturing. International Journal of Production Research, 24(5), 1171-1192.
Garza, O., & Smunt, T. L., (1991). Countering the negative impact of inter-cell flow in cellular manufacturing. Journal of Operations Management, 10(1), 92-118.
Gel, E. S., Hopp, W. J., & Van Oyen, M. P., (2002). Factors affecting opportunity of worksharing as a dynamic line balancing mechanism. IIE Transactions, 34(4), 847-863.
Hopp, W., & Van Oyen, M. P., (2004). Agile workforce evaluation: a framework for cross-training and coordination. IIE Transactions, 36(4), 919-940.
Huq, F., Hensler, D. A., & Mohamed, Z. M., (2001). A simulation analysis of factors influencing the flow time and through-put performance of functional and cellular layouts. Integrated Manufacturing, 12(4), 285-295.
Jensen, J. B., (2000). The impact of resource flexibility and staffing decisions on cellular and departmental shop performance. European Journal of Operational Research, 127(1), 279-296.
Jensen, J. B., Malhotra, M. K., & Philipoom, P.R., (1996). Machine dedication and process flexibility in a group technology environment. Journal of Operations Management, 14(1), 19-39.
Kannan, V. R., & Ghosh, S., (1996). Cellular manufacturing using virtual cells. International Journal of Production Research, 16(1), 99-112.
Kannan, V. R., & Palocsay, S. W., (1999). Cellular vs process layouts: an analytic investigation of the impact of learning on shop performance. Omega, 27(6), 583-592.
Kumar, N., & Shanker, K., (2001). Comparing the effectiveness of workload balancing objectives in FMS loading. International Journal of Production Research, 39(5), 843-871.
Kuula, M., & Stam, A., (1999). Workload balancing in the manufacturing environment: a multicriteria trade-off analysis. International Journal of Production Research, 37(7), 1459-1477.
McCreery, J. K., & Krajewski, L. J., (1999). Improving the equality of workload assignments in assembly lines environment with learning and forgetting effects. International Journal of Production Research, 37(9), 2031-2058.
Morris, S. J., & Tersine, R. J., (1990). A simulation analysis of factors influencing the attractiveness of group technology cellular layouts. Mangement Science, 36(12), 1567-1578.
Noeman, B. A., & Tharmmaphornphilas, W., (2005). Human related issues in manufacturing cell design, implementation, and operation. Computer & Industrial Engineering, 48(2), 507-523.
Noeman, B. A., Tharmmaphornphilas, W., Needy, K. L., Bidanda, B., & Warner, R. C. (2002). Worker assignment in cellular manufacturing considering technical and human skills. International Journal of Production Research, 40(6), 1479-1492.
Schultz, K. L., McClain, J. O., & Thomas, L. J., (2003). Overcoming the dark side of worker flexibility. Journal of Operations Management, 21(1), 81-92.
Sennott, L. I., Van Oyen, M. P., & Iravani, M. R., (2006). Optimal dynamic assignment of a flexible worker on an open production line with specialists. European Journal of Operational Research, 170(2), 541-566.
Shafer, S. M., & Charnes, J. M., (1993). Cellular versus functional layouts under a variety of shop operating conditions. Decision Science, 24(2), 665-681.
Shambu, G., & Sureah, N. C., (2000). Performance of hybrid cellular manufacturing systems: A computer simulation investigation. European Journal of Operational Research, 120(2), 436-458.
Slomp, J., Bokhorst, J. A.C., & Molleman, E., (2005). Cross-training in a cellular manufacturing environment. Computer & Industrial Engineering, 48(3), 609-624.
Slomp, J., & Molleman, E., (2001). The impact of technological innovations on work design in a cellular manufacturing environment. New Technology, Work, and Employment, 16(3), 152-155.
Suer, G. A., & Dagli, C., (2005). Intra-cell manpower transfers and cell loading in labor-intensive manufacturing cells. Computer & Industrial Engineering, 48(3), 643-655.
Suresh, N. C., (1991). Partitioning work centres for group technology: insights from an analytical model. Decision Science, 22(3), 772–791.
Suresh, N. C., (1992). Partitioning work centres for group technology: analytical extension and shop-level simulation investigation.Decision Science, 23(1), 267-290.
Suresh, N. C., & Gaalman, G. J. C., (2000). Performance evaluation of cellular layouts: extension to DRC system contexts. International Journal of Production Research, 38(17), 4393-4402.
Suresh, N. C., & Meredith, J. R., (1994). Coping with the loss of pooling synergy in cellular manufacturing systems. Mangement Science, 40(4), 466-483.
Suresh, N. C., & Slomp, J., (2005). Performance comparison of virtual cellular manufacturing with functional and cellular layouts in DRC setting. International Journal of Production Research, 43(5), 945-979.
Treleve, M., (1989). A review of the dual resource constrained system research. IIE Transactions, 21(3), 279-287.
Van Oyen, M. P., Gel, E. G. S., & Hopp, W. J., (2001). Performance opportunity for workforce agility in collaborative and noncollaborative work systems. IIE Transactions, 33(9), 761-777.
描述 碩士
國立政治大學
企業管理研究所
93355053
94
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0933550531
資料類型 thesis
dc.contributor.advisor 洪叔民zh_TW
dc.contributor.author (Authors) 張毓欣zh_TW
dc.creator (作者) 張毓欣zh_TW
dc.date (日期) 2005en_US
dc.date.accessioned 18-Sep-2009 13:43:32 (UTC+8)-
dc.date.available 18-Sep-2009 13:43:32 (UTC+8)-
dc.date.issued (上傳時間) 18-Sep-2009 13:43:32 (UTC+8)-
dc.identifier (Other Identifiers) G0933550531en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/35071-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 企業管理研究所zh_TW
dc.description (描述) 93355053zh_TW
dc.description (描述) 94zh_TW
dc.description.abstract (摘要)   由於少量多樣的生產趨勢,單元製造系統(Cellular Manufacturing Systems)已成為目前製造業的重點之一。在單元製造系統中,具有多種技能的員工是必備的條件,如何有效的配置人力策略即為本研究的重點。人力配置策略包含了指定式(由單一操作員負責某件工作)、共享式(由兩名或兩名以上操作員共同負責某件工作)及混合式人力配置策略(同時使用指定式和共享式兩種策略),其中,共享式和混合式的人力配置策略可稱為彈性人力配置策略。要使用彈性人力配置策略,需要有人力彈性(Labor Flexibility)。
  所謂的人力彈性在單元製造系統可分為兩個方向:(1)單元間的人力彈性(Inter-Cell Labor Flexibility),即不同單元間的轉換能力,(2)單元內的人力彈性(Intra-Cell Labor Flexibility),即單元內不同工作間的轉換能力。本研究分為兩個主要部份,分別探討在單元間採用彈性人力配置策略和在單元內採用彈性人力配置策略對於工作量平衡程度、工作量共享程度和績效表現的影響。
  根據研究結果,在單元內採用彈性的人力配置策略對於操作員間的工作量平衡和績效表現皆有直接且正向影響,但隨著操作員數目的減少,彈性的人力配置策略對於績效表現之影響減弱、甚至變為負向效果;在單元間採用彈性的人力配置策略之效果和在單元內採用彈性的人力配置策略相似,對操作員間的工作量平衡和績效表現亦有直接且正向影響,且隨著單元數增加,在單元間採用彈性的人力配置策略對績效表現的影響增強。本研究之結果可做為運用彈性的人力配置策略以及規劃交互訓練時的參考方向,並可用此架構來預測績效改變。
zh_TW
dc.description.abstract (摘要) The object of the research is to study agile labor assignments in cellular manufacturing systems by intra-cell and inter-cell operator’s mobility. There are three labor assignments strategies including dedicated (only one operator is responsible for a work), shared (two or more than two operators are responsible for a work), and combined assignment (using both of dedicated assignment and shared assignment). Different assignments lead to different workload balancing, workload sharing and performance.
The research builds a simulate framework which includes operators’ moving rule, proposition of empirical study and index of workload balancing and workload sharing. According the result of research, applying intra-cell operator’s mobility can improve operator’s workload balancing and performance. Nevertheless, the relationship of intra-cell operator’s mobility and performance would decrease with decreasing of labor limited. The impact of inter-cell operator’s mobility is similar to intra-cell operator’s mobility, but it would increase with increase of complexity. The simulate framework which pass through the testing can use in an actual company case, provide a direction of how to use labor assignments, and forecast the impact of using agile labor assignment.
en_US
dc.description.tableofcontents 摘要 i
誌謝 iii
目次 iv
表次 vi
圖次 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機和目的 2
1.3 研究流程 2
第二章 文獻探討 4
2.1 單元製造系統的績效表現 4
2.1.1 流程時間 7
2.1.2在製品存貨 8
2.1.3 前置時間 8
2.1.4 機器效率(Machine Utilization) 9
2.1.5 工作量平衡程度 9
2.2 影響人力彈性的因素 11
2.2.1 人力配置策略(Labor Assignment Strategy) 12
2.2.3 工作量平衡程度(Workload balancing) 13
2.2.2 工作量共享程度(Workload Sharing) 14
2.2.4 Cross-training (交互訓練) 15
2.2.5 工人的心理因素 16
2.3模擬製造單元的方法 17
第三章 研究方法 20
3.1 研究架構 20
3.2 各項變數 21
3.2.1工作量平衡程度 21
3.2.2 避免瓶頸的產生 23
3.2.3 工作量共享程度 23
3.2.4 管理概念 25
3.3 評估人員配置策略 26
3.3.1 模擬步驟 27
3.3.2 研究限制和範圍 32
第四章 研究結果 33
4.1 單元內工作量共享程度 33
4.1.1 單一製造單元/兩名操作員 33
4.1.2 單一製造單元/三名操作員 46
4.1.3 比較 50
4.1.4 批量大小的影響 53
4.1.5 小結 54
4.2 單元間工作量共享程度 57
4.2.1 二個製造單元/四名操作員 57
4.2.2 三個製造單元/六名操作員 63
4.2.3 小結 66
第五章 結論和建議 68
5.1 結論 68
5.2 後續研究建議 69
參考文獻 71
zh_TW
dc.format.extent 190187 bytes-
dc.format.extent 219489 bytes-
dc.format.extent 438029 bytes-
dc.format.extent 334221 bytes-
dc.format.extent 434701 bytes-
dc.format.extent 238767 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0933550531en_US
dc.subject (關鍵詞) 單元製造系統zh_TW
dc.subject (關鍵詞) 人力配置策略zh_TW
dc.subject (關鍵詞) 人力資源有限系統zh_TW
dc.subject (關鍵詞) 工作量平衡程度zh_TW
dc.subject (關鍵詞) 工作量共享程度zh_TW
dc.subject (關鍵詞) Cellular Manufacturing Systemsen_US
dc.subject (關鍵詞) Labor Assignmenten_US
dc.subject (關鍵詞) Labor Limited Systemsen_US
dc.subject (關鍵詞) Workload Balancingen_US
dc.subject (關鍵詞) Workload Sharingen_US
dc.title (題名) 單元製造系統之人力配置策略研究zh_TW
dc.title (題名) A Study of Operator A ssignments Flexibility within and betwe en Cellular Manufacturing Systemsen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Agarwal, A., & Sarkis, J., (1998). A review and analysis of comparative performance studies on functional and cellular manufacturing layouts. Computer & Industrial Engineering, 34(1), 77-89.zh_TW
dc.relation.reference (參考文獻) Ang, C. L., & Willey, P. C. T., (1984). A comparative study of the performance of pure and hybrid group technology manufacturing systems using computer simulation techniques. International Journal of Production Research, 22(2), 193-233.zh_TW
dc.relation.reference (參考文獻) Askin, R. G., & Chen, J., (2006). Dynamic task assignment for throughput maximization with worksharing. European Journal of Operational Research, 168(3), 853-869.zh_TW
dc.relation.reference (參考文獻) Bokhorst, L. A. C., Slomp, J., & Gaalman, G. J. C., (2004). On the who-rule in Dual Resource Constrained (DRC) manufacturing systems. International Journal of Production Research, 42(23), 5049-5074.zh_TW
dc.relation.reference (參考文獻) Brusco, M. J., & Johns, T. R., (1998). Staffing a multiskilled workforce with varying levels of productivity: An analysis of cross-training policies. Decision Sciences, 29(2), 499-515.zh_TW
dc.relation.reference (參考文獻) Burgess, A.G., Vollmann, T.E., & Morgan, I., (1993). Cellular manufacturing: its impact on the total factory. International Journal of Production Research, 31(8), 2059-2077.zh_TW
dc.relation.reference (參考文獻) Cesani, V. I., & Steudel, H. J., (2005). A study of labor assignment flexibility in cellular manufacturing systems. Computer & Industrial Engineering, 48(3), 571-591.zh_TW
dc.relation.reference (參考文獻) Eckstein, A. L. H., & Rohleder, T. R., (1998). Incorporating human resources in group technology / cellular manufacturing. International Journal of Production Research, 36(4), 1199-1222.zh_TW
dc.relation.reference (參考文獻) Felan, J. T., & Fry, T. D., (2001). Multi-level heterogeneous worker flexibility in a dual resource constrained (DRC) job-shop. International Journal of Production Research, 39(14), 3041-3059.zh_TW
dc.relation.reference (參考文獻) Flynn, B. B., (1987). Repetitive lots: the use of a sequence dependent set-up time scheduling procedure in grouping technology and traditional shops. European Journal of Operational Management, 7(2), 203-216.zh_TW
dc.relation.reference (參考文獻) Flynn, B. B., & Jacobs, F. R., (1986). A simulation comparison of group technology with traditional job shop manufacturing. International Journal of Production Research, 24(5), 1171-1192.zh_TW
dc.relation.reference (參考文獻) Garza, O., & Smunt, T. L., (1991). Countering the negative impact of inter-cell flow in cellular manufacturing. Journal of Operations Management, 10(1), 92-118.zh_TW
dc.relation.reference (參考文獻) Gel, E. S., Hopp, W. J., & Van Oyen, M. P., (2002). Factors affecting opportunity of worksharing as a dynamic line balancing mechanism. IIE Transactions, 34(4), 847-863.zh_TW
dc.relation.reference (參考文獻) Hopp, W., & Van Oyen, M. P., (2004). Agile workforce evaluation: a framework for cross-training and coordination. IIE Transactions, 36(4), 919-940.zh_TW
dc.relation.reference (參考文獻) Huq, F., Hensler, D. A., & Mohamed, Z. M., (2001). A simulation analysis of factors influencing the flow time and through-put performance of functional and cellular layouts. Integrated Manufacturing, 12(4), 285-295.zh_TW
dc.relation.reference (參考文獻) Jensen, J. B., (2000). The impact of resource flexibility and staffing decisions on cellular and departmental shop performance. European Journal of Operational Research, 127(1), 279-296.zh_TW
dc.relation.reference (參考文獻) Jensen, J. B., Malhotra, M. K., & Philipoom, P.R., (1996). Machine dedication and process flexibility in a group technology environment. Journal of Operations Management, 14(1), 19-39.zh_TW
dc.relation.reference (參考文獻) Kannan, V. R., & Ghosh, S., (1996). Cellular manufacturing using virtual cells. International Journal of Production Research, 16(1), 99-112.zh_TW
dc.relation.reference (參考文獻) Kannan, V. R., & Palocsay, S. W., (1999). Cellular vs process layouts: an analytic investigation of the impact of learning on shop performance. Omega, 27(6), 583-592.zh_TW
dc.relation.reference (參考文獻) Kumar, N., & Shanker, K., (2001). Comparing the effectiveness of workload balancing objectives in FMS loading. International Journal of Production Research, 39(5), 843-871.zh_TW
dc.relation.reference (參考文獻) Kuula, M., & Stam, A., (1999). Workload balancing in the manufacturing environment: a multicriteria trade-off analysis. International Journal of Production Research, 37(7), 1459-1477.zh_TW
dc.relation.reference (參考文獻) McCreery, J. K., & Krajewski, L. J., (1999). Improving the equality of workload assignments in assembly lines environment with learning and forgetting effects. International Journal of Production Research, 37(9), 2031-2058.zh_TW
dc.relation.reference (參考文獻) Morris, S. J., & Tersine, R. J., (1990). A simulation analysis of factors influencing the attractiveness of group technology cellular layouts. Mangement Science, 36(12), 1567-1578.zh_TW
dc.relation.reference (參考文獻) Noeman, B. A., & Tharmmaphornphilas, W., (2005). Human related issues in manufacturing cell design, implementation, and operation. Computer & Industrial Engineering, 48(2), 507-523.zh_TW
dc.relation.reference (參考文獻) Noeman, B. A., Tharmmaphornphilas, W., Needy, K. L., Bidanda, B., & Warner, R. C. (2002). Worker assignment in cellular manufacturing considering technical and human skills. International Journal of Production Research, 40(6), 1479-1492.zh_TW
dc.relation.reference (參考文獻) Schultz, K. L., McClain, J. O., & Thomas, L. J., (2003). Overcoming the dark side of worker flexibility. Journal of Operations Management, 21(1), 81-92.zh_TW
dc.relation.reference (參考文獻) Sennott, L. I., Van Oyen, M. P., & Iravani, M. R., (2006). Optimal dynamic assignment of a flexible worker on an open production line with specialists. European Journal of Operational Research, 170(2), 541-566.zh_TW
dc.relation.reference (參考文獻) Shafer, S. M., & Charnes, J. M., (1993). Cellular versus functional layouts under a variety of shop operating conditions. Decision Science, 24(2), 665-681.zh_TW
dc.relation.reference (參考文獻) Shambu, G., & Sureah, N. C., (2000). Performance of hybrid cellular manufacturing systems: A computer simulation investigation. European Journal of Operational Research, 120(2), 436-458.zh_TW
dc.relation.reference (參考文獻) Slomp, J., Bokhorst, J. A.C., & Molleman, E., (2005). Cross-training in a cellular manufacturing environment. Computer & Industrial Engineering, 48(3), 609-624.zh_TW
dc.relation.reference (參考文獻) Slomp, J., & Molleman, E., (2001). The impact of technological innovations on work design in a cellular manufacturing environment. New Technology, Work, and Employment, 16(3), 152-155.zh_TW
dc.relation.reference (參考文獻) Suer, G. A., & Dagli, C., (2005). Intra-cell manpower transfers and cell loading in labor-intensive manufacturing cells. Computer & Industrial Engineering, 48(3), 643-655.zh_TW
dc.relation.reference (參考文獻) Suresh, N. C., (1991). Partitioning work centres for group technology: insights from an analytical model. Decision Science, 22(3), 772–791.zh_TW
dc.relation.reference (參考文獻) Suresh, N. C., (1992). Partitioning work centres for group technology: analytical extension and shop-level simulation investigation.Decision Science, 23(1), 267-290.zh_TW
dc.relation.reference (參考文獻) Suresh, N. C., & Gaalman, G. J. C., (2000). Performance evaluation of cellular layouts: extension to DRC system contexts. International Journal of Production Research, 38(17), 4393-4402.zh_TW
dc.relation.reference (參考文獻) Suresh, N. C., & Meredith, J. R., (1994). Coping with the loss of pooling synergy in cellular manufacturing systems. Mangement Science, 40(4), 466-483.zh_TW
dc.relation.reference (參考文獻) Suresh, N. C., & Slomp, J., (2005). Performance comparison of virtual cellular manufacturing with functional and cellular layouts in DRC setting. International Journal of Production Research, 43(5), 945-979.zh_TW
dc.relation.reference (參考文獻) Treleve, M., (1989). A review of the dual resource constrained system research. IIE Transactions, 21(3), 279-287.zh_TW
dc.relation.reference (參考文獻) Van Oyen, M. P., Gel, E. G. S., & Hopp, W. J., (2001). Performance opportunity for workforce agility in collaborative and noncollaborative work systems. IIE Transactions, 33(9), 761-777.zh_TW