dc.contributor.advisor | 蔡瑞煌 | zh_TW |
dc.contributor.advisor | Tsahi Ray | en_US |
dc.contributor.author (Authors) | 柯文乾 | zh_TW |
dc.contributor.author (Authors) | Ke, Wen-Chyan | en_US |
dc.creator (作者) | 柯文乾 | zh_TW |
dc.creator (作者) | Ke, Wen-Chyan | en_US |
dc.date (日期) | 2002 | en_US |
dc.date.accessioned | 18-Sep-2009 14:22:32 (UTC+8) | - |
dc.date.available | 18-Sep-2009 14:22:32 (UTC+8) | - |
dc.date.issued (上傳時間) | 18-Sep-2009 14:22:32 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0090356002 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/35180 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 資訊管理研究所 | zh_TW |
dc.description (描述) | 90356002 | zh_TW |
dc.description (描述) | 91 | zh_TW |
dc.description.abstract (摘要) | 神經網路已經被成功地應用於解決各種分類及函數近似的問題,尤其因為神經網路是個萬能的近似器(universal approximator),所以對於函數近似的問題效果更為顯著。以往對於此類問題雖然多數以線性的分析工具為主,但是實際上多數問題本質上是非線性的,所以對於非線性分析工具的需求其實是很大的。自1986年起,神經網路本身的運作一直被視為一個黑箱作業,難以判斷網路學習結果的合理性,更無法有效地幫助使用者增進其知識,因此提供一套合理及有效的神經網路分析方法是重要。本文提出一套分析神網路系統的方法;利用線性規劃的技巧萃取及分析網路中的規則(rule),而不需要對任何資料集做分析;進而利用統計無母數方法-符號檢定-歸納出網路中的知識。以債券評價為例,驗證此方法的可行性,實證結果亦顯示此方法所萃取出來的規則是合理的,且由這些萃取出的規則中,所歸納出來有關債券評價的知識多數是合理的。 | zh_TW |
dc.description.abstract (摘要) | Neural networks have been successfully applied to solve a variety of application problems including classification and function approximation. They are especially useful for function approximation problems because they have been shown to be uni-versal approximators. In the past, for function approximation problems, they were mainly analyzed via tools of linear analyses. However, most of the function approxi-mation problems needed tools of nonlinear analyses in fact. Thus, there is the much demand for tools of nonlinear analyses. Since 1986, the neural network is considered a black box. It is hard to determine if the learning result of a neural network is rea-sonable, and the network can not effectively help users to develop the domain knowl-edge. Thus, it is important to supply a reasonable and effective analytic method of the neural network.Here, we propose an analytic method of the neural network. It can extract rules from the neural network and analyze them via the Linear Programming and does not depend on any data analysis. Then we can generalize domain knowledge from these rules via the sign test, a statistical non-parameter method. We take the bond-pricing as an instance to examine the feasibility of our proposed method. The result shows that these extracted rules are reasonable by our method and that these generalized domain knowledge from these rules is also reasonable. | en_US |
dc.description.tableofcontents | Contents1. Introduction 12. Related Works 42.1 Cluster Analysis 42.1.1 Chi2 Algorithm (Liu and Setiono, 1995) 42.2 Rule Extraction Techniques 62.2.1 NeuroLinear (Setiono and Liu, 1997) 6Neural Network Training and Pruning 6Rule Generation 82.2.2 STARE (Zhou et al., 2000) 10Data Generation 10Continuous Attribute Processing 10Rule Creation 11Priority Formation 12Fidelity Evaluation 132.2.3 CREFANN (Gaweda et al., 2000) 15Rule Extraction Algorithm 15Rule-based Approximation Algorithm 162.2.4 REFANN (Setiono et al., 2002). 17Neural Network Training and Pruning Algorithm 17To Approximate Hidden Node Activation Function 20Rule Generation 222.2.5 RN2 (Satio and Nakano, 2002) 24Neural Network Training 24Method for Rule Extraction 262.3 Discussion 293. Methodology 323.1 Definition 323.2 Method of Extracting Rules from Neural Networks 333.2.1 The Approximation of Hidden Node Activation Function 333.2.2 The Differential Analysis of Rules 363.2.3 The Rule Extraction Process 384. Empirical Study 404.1 Bond Pricing 404.2 Data Collection and Method Application 424.3 Results and Analysis 495. Conclusions and Future Work 525.1 Conclusions 525.2 Future Work 53References 54 | zh_TW |
dc.format.extent | 128892 bytes | - |
dc.format.extent | 88876 bytes | - |
dc.format.extent | 154079 bytes | - |
dc.format.extent | 131512 bytes | - |
dc.format.extent | 213376 bytes | - |
dc.format.extent | 384595 bytes | - |
dc.format.extent | 255186 bytes | - |
dc.format.extent | 304246 bytes | - |
dc.format.extent | 159078 bytes | - |
dc.format.extent | 158365 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0090356002 | en_US |
dc.subject (關鍵詞) | 知識萃取 | zh_TW |
dc.subject (關鍵詞) | 規則萃取 | zh_TW |
dc.subject (關鍵詞) | 法則萃取 | zh_TW |
dc.subject (關鍵詞) | 債券評價 | zh_TW |
dc.subject (關鍵詞) | knowledge extraction | en_US |
dc.subject (關鍵詞) | rule extraction | en_US |
dc.subject (關鍵詞) | bond-pricing | en_US |
dc.title (題名) | The Rule Extraction from Multi-layer Feed-forward Neural Networks | zh_TW |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | Bishop, C. M. (1995). Neural network for pattern recognition. Oxford : Clarendon Press. | zh_TW |
dc.relation.reference (參考文獻) | Fu, L. (1994). Neural networks in computer intelligence. McGraw-Hill, Inc. | zh_TW |
dc.relation.reference (參考文獻) | Gaweda, A. E., Setiono, R., and Zurada, J. M. (2000). "Rule extraction from feed--forward neural network for function approximation." In: Proceedings of the 5th Conference on Neural Networks and Soft Computing, Zakopane, Poland, pp. 311-316. | zh_TW |
dc.relation.reference (參考文獻) | Gill, P. E., Mao, Z. H., and Li, Y. D. (1981). Practical optimization. New York: Aca-demic. | zh_TW |
dc.relation.reference (參考文獻) | Hertz, J., Krogh, A. and Palmer, R. G. (1991). Introduction to the theory of neural computation, Redwood City, CA: Addison Wesley. | zh_TW |
dc.relation.reference (參考文獻) | Hogg, R. V., Tains, E. A. (1997a). Probability and statistical inference-5th ed, New Jersey: Prentice Hall, pp. 394-455. | zh_TW |
dc.relation.reference (參考文獻) | Hogg, R. V., Tains, E. A. (1997b). Probability and statistical inference-5th ed, New Jersey: Prentice Hall, pp. 608-614. | zh_TW |
dc.relation.reference (參考文獻) | Karnin, E. D. (1990). "A simple procedure for pruning back-propagation trained neural networks." IEEE Transactions on Neural Networks, Vol. 1, No. 2, pp.239-242. | zh_TW |
dc.relation.reference (參考文獻) | Kerber, R. (1992). "ChiMerge: Discretization of numeric attributes." In: Proceedings Ninth National Conference on Artificial Intelligence, Menlo Park, CA: AAAI Press, pp. 123-128. | zh_TW |
dc.relation.reference (參考文獻) | Lloyd, S. P. (1982). "Least squares quantization in PCM." IEEE Transactions on In-formation Theory, Vol. 28, No. 2, 129-137. | zh_TW |
dc.relation.reference (參考文獻) | Liu, H., and Setiono, R. (1995). "Chi2: Feature selection and discretization of nu-meric attributes." In: Proceedings of the Seventh International Conference on Tools with Artificial Intelligence, pp. 388-391. | zh_TW |
dc.relation.reference (參考文獻) | Liu, H., and Tan, S. T. (1995). "X2R: A fast rule generator." In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, IEEE Press. | zh_TW |
dc.relation.reference (參考文獻) | Malkiel, B. G., (1962). "Expectations, bond prices, and the term structure of interest rates." Quarterly Journal of Economics, Vol 76, No. 2, pp.197-218. | zh_TW |
dc.relation.reference (參考文獻) | Murty, K. G., (1983). Linear Programming. New York: John Wiley & Sons, pp.91-181. | zh_TW |
dc.relation.reference (參考文獻) | Neter, J., Kuter, M.H., Nachtsheim C.J., and Wasserman W. (1996). Applied linear regression models─3rd ed. Richard D. Irwin, pp. 640. | zh_TW |
dc.relation.reference (參考文獻) | Quinlan, J. R. (1993), C4.5: Programs for machine learning. Sam Mateo, CA: Morgan Kaufmann. | zh_TW |
dc.relation.reference (參考文獻) | Rosenblatt, F. (1958), "The perceptron: a probabilistic model for information storage and organization in the brain." Psychological Review, Vol. 65, pp. 386-408. | zh_TW |
dc.relation.reference (參考文獻) | Rumelhart, D.E., Hinton, G.E., and Williams, R. (1986). "Learning internal repre-sentation by error propagation." Parallel Distributed Processing. Cambridge, MA: MIT Press, Vol. 1, pp. 318-362. | zh_TW |
dc.relation.reference (參考文獻) | Saito, K., and Nakano R. (2002). "Extracting regression rules from neural networks." Neural Network, Vol. 15, No. 10, pp. 1297-1288. | zh_TW |
dc.relation.reference (參考文獻) | Saito, K., and Nakano R. (2000). "Discovery of relevant weight by minimizing cross-validation error." In: Proceedings of the Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining, Kyoto, Japan, pp. 372-375. | zh_TW |
dc.relation.reference (參考文獻) | Seber, G.A.F., and Wild, C.J. (1989). Nonlinear regression. New York: John Wiley & Sons, pp. 465-471 | zh_TW |
dc.relation.reference (參考文獻) | Setiono, R., Leow, W. K., and Zurada, J. M. (2002). "Extraction of rules from artifi-cial neural networks for nonlinear regression," IEEE Transactions on Neural Networks, Vol. 13, No. 3, pp. 564-577. | zh_TW |
dc.relation.reference (參考文獻) | Setiono, R. (1997). "A penalty function approach for pruning feed-forward neural networks." Neural Computation, Vol. 9, No. 1, pp.185-204. | zh_TW |
dc.relation.reference (參考文獻) | Setiono, R., and Liu. H. (1997). "NeuroLinear: From neural networks to oblique de-cision rules." Neurocomputing, Vol. 17, No. 1, pp. 1-24. | zh_TW |
dc.relation.reference (參考文獻) | Setiono, R., and Liu, H. (1996). "Symbolic representation of neural networks." IEEE Computer, Vol. 29,. No. 3, pp. 71-77. | zh_TW |
dc.relation.reference (參考文獻) | Sharpe, W. F. and Alexander, G. J. (1990). Investments-the fourth edition. New Jer-sey: Prentice-Hall, Inc, pp.382-384. | zh_TW |
dc.relation.reference (參考文獻) | Simth, M. (1993). Nerual networks for statistical modeling. New York: Van Nostrand Reinhold, pp.167. | zh_TW |
dc.relation.reference (參考文獻) | Stone, M. (1974). "Cross-validatory choice and assessment of statistical predictions (with discussion)." Journal of the Royal Statistical Society B, Vol. 36, No. 1, pp.111-147. | zh_TW |
dc.relation.reference (參考文獻) | Taha, I. A., and Ghosh, J. (1999). "Symbolic interpretation of artificial neural net-works." IEEE Transactions on Knowledge and Data Engineering, Vol. 11, No. 3, pp.448-463. | zh_TW |
dc.relation.reference (參考文獻) | Taha, I. A., and Ghosh, J. (1996). "Three techniques for extracting rule from feed-forward networks." In: Dagli, C. H., Akay, M., Fernandez, B., Chen, C. L. P., Ghosh J. (Eds). Intelligent Engineering System Through Artificial Neural Networks (Volume 6), St. Louis: ASME Press, pp.23-28. | zh_TW |
dc.relation.reference (參考文獻) | The MathWorks, Inc. (2002). Optimization Toolbox User’s Guide. [Online]. Avail-able: http://www.mathworks.com/access/helpdesk/help/pdf_doc/optim/optim_tb. pdf | zh_TW |
dc.relation.reference (參考文獻) | Towell, G., and Shavlik, J. (1993). "The extraction of refined rules from knowl-edge-based neural networks." Machine Learning, Vol. 13, No. 1, pp. 71-101. | zh_TW |
dc.relation.reference (參考文獻) | Vapnik, V. (1995). "The nature of statistical learning theory." New York: Springer-Verlag. | zh_TW |
dc.relation.reference (參考文獻) | Van Ooyen, A., Nienhuis, B. (1992). "Improving the convergence of the backpropa-gation algorithm." Neural Networks, Vol. 5, No. 3, pp.465-471. | zh_TW |
dc.relation.reference (參考文獻) | Weijters, T., and Bosch, A. V. D. (1998). "Interpretable neural networks with BP-SOM," In: Tasks and Methods in Applied Artificial Intelligence. Lecture Notes in Artificial Intelligence 1416(A. del Pobil, J. Mira, and M. Ali, eds.), Ber-lin: Springer, pp. 564-573. | zh_TW |
dc.relation.reference (參考文獻) | Zhou, R. R., Chen, S. F., and Chen, Z. Q. (2000). "A statistics based approach for ex-tracting priority rules from trained neural networks." In: Proceedings of the IEEE-INNS-ENNS International Join Conference on Neural Network, Como, It-aly, Vol. 3, pp. 401-406. | zh_TW |