Publications-Theses

題名 語意式構思學習模式於協同式腦力激盪決策
Semantic Ideation Learning for Collective Brainstorming
作者 陳延全
Chen,Yen-Chuan
貢獻者 苑守慈
Yuan, Soe-Tsyr
陳延全
Chen,Yen-Chuan
關鍵詞 智慧型代理人
腦力激盪法
增強式學習
Intelligent Agent
Brainstorming
Reinforcement Learning
日期 2005
上傳時間 18-Sep-2009 14:29:14 (UTC+8)
摘要 「知識經濟」時代下,知識汰舊換新速度極快,單打獨鬥不及於團隊合作的成效,因此,不論組織或個人均須講求團隊合作。腦力激盪法(Brainstorming)即是透過團隊合作、協同決策的方式產生具有創意的解決方案。本研究結合智慧型代理人的技術與人類獨特的腦力激盪思考方式,利用智慧型代理人的自主性、溝通能力、適應力與學習能力等特性,讓智慧型代理人能在適當的時候代替腦力激盪會議的與會者出席會議,達成會議目標。為了讓智慧型代理人也能模仿人類進行創意思考,本研究以人類主要用來產生創意構思的三種聯想能力做為代理人之推論機制,並結合增強式學習的概念,設計出能根據以本體論表達之概念(Ontology-Based Concept)進行構思激盪之語意式構思學習代理人( Semantic Ideation Learning Agent,SILA ),並架構一個能讓多個SILA進行知識分享與學習的系統環境-腦力激盪式協同決策系統(Collective Brainstorming Decision System, CBDS)。本研究以傳統的腦力激盪決策模式為基礎,結合現代之網路語意表達與代理人技術,期望讓在網路上代表不同角色、身份的代理人,基於其所擁有之構思知識庫 (Idea Knowledge Base),透過代理人之間的溝通與知識分享,達成代理人自動化協同決策(Collective Decision)之目標。
In Knowledge Economy Era, the organization and individual are emphasizing on the teamwork instead of single play because of better effectiveness. Brainstorming is a solution that can help organization to generate creative ideas through teamwork and collaboration. This research combines human’s unique brainstorming thinking and the intelligent agent technique for devising an automated decision agent called Semantic Ideation Learning Agent (SILA) (that can represent a session participant to engage the action of brainstorming). In order to make a SILA thinking like human, our research presents a method of Reinforcement Learning grounded on three capabilities of human’s association (similarity, contiguity, contrast) as the SILA’s inference mechanism. Furthermore, the Collective Brainstorming Decision System was build to provide an environment where SILAs can learn and share their knowledge. The aim of this research is to reach automatic collective decision in a brainstorming session through the collaboration of the agents based on the brainstorming decision model and some modern information techniques including knowledge base, semantic web and intelligent agents.
參考文獻 1. 林隆儀譯(1984),J. Geoffrey Rawlinson著,“創造性思考與腦力激盪法”,清華管理科學圖書中心,臺北市,第1版。
2. 李魁元(2002),“具灰色效能評斷單元之加強式學習架構”, 國立中正大學電機工程學系碩士論文,民國91年。
3. 施乃華(2001),“創造思考教學成效之後設分析”,彰化師範大學商業教育學所碩士論文,民國90年。
4. 許維德(1999),“在同步雙邊拍賣市場中代理人競標策略之學習”,國立清華大學資訊工程研究所碩士論文,民國88年。
5. 陳天亮(1993),“群體軟體支援腦力激盪之績效評估”,國立中山大學資訊管理研究所碩士論文,民國82年。
6. 陳俊隆(1999),“一個以多代理人為基礎之智慧型教學代理人”,逢甲大學資訊工程研究所碩士論文,民國88年。
7. 連英惠(2001),“智慧型旅遊路線排程系統”,靜宜大學資訊管理學研究所碩士論文,民國90年。
8. 黃淑惠(2002),“國小視覺藝術創造思考課程與教學之研究”,屏東師範學院視覺藝術教育研究所碩士論文,民國91年。
9. 葉美伶(2004),“無線點對點之適境化雙贏協商機制”,輔仁大學資訊管所研究所碩士論文,民國93年。
10. 詹瓊華(2003),“高中家政課程實施創造思考教學之成效”,國立臺灣師範大學人類發展與家庭研究所碩士論文,民國92年。
11. 蒲怡靜(2003),“電子腦力激盪術於設計創意值之研究”,國立成功大學工業設計研究所碩士論文,民國92年。
12. 劉佳麟(2003),“電子腦力激盪對學習成效之研究”,國立台北科技大學商業自動化與管理研究所碩士論文,民國92年。
13. 劉昕鵬(2003),“Ontology 理論研究和應用建模——《Ontology 研究綜述》、w3c Ontology 研究組文檔以及Jena 編程應用總結”,28 March 2003
14. 鄭寶庭(2003),“使用語意認知機制建置資源調配管理系統之研究”,中原大學資訊管理研究所碩士論文,民國92年。
15. Borst, P., Akkermans, H. and Top, J. (1997), “Engineering Ontologies,” International Journal of Human-Computer Studies 46, 365-406, 1997.
16. Chang, Wei-Lun and Yuan, Soe-Tsyer (2005), “Ambient iCare e-Services for Quality Aging: Framework and Roadmap,” 7-th International IEEE Conference on E-Commerce Technology 2005, July, 19-22, Munich, Germany.
17. Dennis, A. R., Aronson, J. E., Heninger, W. G., E, Walker II, E. D. (1999), “Structuring Time and Task in Electronic Brainstorming,” MIS Quarterly 23(1).
18. Dietterich, T. G. (2000), “An Overview of MAXQ Hierarchical Reinforcement Learning,” In B. Y. Choueiry and T. Walsh (Eds.) Proceedings of the Symposium on Abstraction, Reformulation and Approximation SARA 2000, Lecture Notes in Artificial Intelligence (pp. 26-44), New York: Springer Verlag
19. Dietterich, T. G. (2003), “Learning and Reasoning,” Technical report, School of Electrical Engineering and Computer Science, Oregon State University, 2003.
20. Farquhar, A., Fikes, R. & Rice, J. (1997), “Tools for assembling modular ontologies in Ontolingua,” In Proc. of Fourteenth American Association for Artificial Intelligence Conference(AAAI-97), Menlo Park, CA, AAAI/MIT Press, 436–441.
21. Glorennec, P. Y. (2000), “Reinforcement Learning: an Overview,” ESIT 2000, Aachen, Germany.
22. Gruber, T.R. (1993), “A Translation Approach to Portable Ontologies,” Knowledge Acquisition 5(2), 1993, 199-220.
23. Guarino, N. & Welty, C. (2001), “Supporting Ontological Analysis of Taxonomic Relationships,” Data and Knowledge Engineering 39(1), 51-74.
24. Impulse Research Corporation (2003), “Conferencing Technologies Save Time and Money,” Published: October 21, 2003. http://www.find.org.tw//0105/news/0105_news_disp.asp?news_id=2868
25. Murnughan, J.K. (1981), “Group Decision Making”.
26. Kay,G. (1995), “Effective Meetings Through Electronic Brainstorming,” Management Quarterly, Vol.35, No.4, pp.15-26.
27. Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996), “Reinforcement learning: A survey,” J. Artif. Intell. Res., no. 4, pp. 237–285, May 1996.
28. Noy, N. F., McGuinness, D. L. (2001), “Ontology Development 101: A Guide to Creating Your First Ontology,” Stanford Knowledge Systems Laboratory Technical Report KSL-01-05. March 2001.
29. Osborn, A.F. (1953), “Applied Imagination : principles and procedures of creative problem-solving,” New York: Scribner’s.
30. Scott G Isaksen (1998), “A Review of Brainstorming Research: Six Critical Issues for Inquirys,” Monograph #302 (Buffalo, NY: Creative Problem Solving Group, 1998): 11–12.
31. Stacey, R.D. (1999), “Strategic Management and Organizational Dynamics: the Challenge of Complexity,” New York: Financial Times Prentice Hall.
32. Sutton, R. S. (1996), “Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding,” Advances in Neural Information Processing System 8, pp. 1038-1044, MIT Press.
33. Sutton, R. S., Barto, A. G. (1998), “Reinforcement Learning: An Introduction,” Cambridge, MA: MIT Press.
34. Tsitsiklis, John N. (1994), “Asynchronous stochastic approximation and Q-learning. Machine Learning,” 1994, 16(3):185-202.
描述 碩士
國立政治大學
資訊管理研究所
93356017
94
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0093356017
資料類型 thesis
dc.contributor.advisor 苑守慈zh_TW
dc.contributor.advisor Yuan, Soe-Tsyren_US
dc.contributor.author (Authors) 陳延全zh_TW
dc.contributor.author (Authors) Chen,Yen-Chuanen_US
dc.creator (作者) 陳延全zh_TW
dc.creator (作者) Chen,Yen-Chuanen_US
dc.date (日期) 2005en_US
dc.date.accessioned 18-Sep-2009 14:29:14 (UTC+8)-
dc.date.available 18-Sep-2009 14:29:14 (UTC+8)-
dc.date.issued (上傳時間) 18-Sep-2009 14:29:14 (UTC+8)-
dc.identifier (Other Identifiers) G0093356017en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/35223-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊管理研究所zh_TW
dc.description (描述) 93356017zh_TW
dc.description (描述) 94zh_TW
dc.description.abstract (摘要) 「知識經濟」時代下,知識汰舊換新速度極快,單打獨鬥不及於團隊合作的成效,因此,不論組織或個人均須講求團隊合作。腦力激盪法(Brainstorming)即是透過團隊合作、協同決策的方式產生具有創意的解決方案。本研究結合智慧型代理人的技術與人類獨特的腦力激盪思考方式,利用智慧型代理人的自主性、溝通能力、適應力與學習能力等特性,讓智慧型代理人能在適當的時候代替腦力激盪會議的與會者出席會議,達成會議目標。為了讓智慧型代理人也能模仿人類進行創意思考,本研究以人類主要用來產生創意構思的三種聯想能力做為代理人之推論機制,並結合增強式學習的概念,設計出能根據以本體論表達之概念(Ontology-Based Concept)進行構思激盪之語意式構思學習代理人( Semantic Ideation Learning Agent,SILA ),並架構一個能讓多個SILA進行知識分享與學習的系統環境-腦力激盪式協同決策系統(Collective Brainstorming Decision System, CBDS)。本研究以傳統的腦力激盪決策模式為基礎,結合現代之網路語意表達與代理人技術,期望讓在網路上代表不同角色、身份的代理人,基於其所擁有之構思知識庫 (Idea Knowledge Base),透過代理人之間的溝通與知識分享,達成代理人自動化協同決策(Collective Decision)之目標。zh_TW
dc.description.abstract (摘要) In Knowledge Economy Era, the organization and individual are emphasizing on the teamwork instead of single play because of better effectiveness. Brainstorming is a solution that can help organization to generate creative ideas through teamwork and collaboration. This research combines human’s unique brainstorming thinking and the intelligent agent technique for devising an automated decision agent called Semantic Ideation Learning Agent (SILA) (that can represent a session participant to engage the action of brainstorming). In order to make a SILA thinking like human, our research presents a method of Reinforcement Learning grounded on three capabilities of human’s association (similarity, contiguity, contrast) as the SILA’s inference mechanism. Furthermore, the Collective Brainstorming Decision System was build to provide an environment where SILAs can learn and share their knowledge. The aim of this research is to reach automatic collective decision in a brainstorming session through the collaboration of the agents based on the brainstorming decision model and some modern information techniques including knowledge base, semantic web and intelligent agents.en_US
dc.description.tableofcontents 表 次 IV
圖 次 V
第壹章 緒論 1
第一節 研究背景 1
第二節 研究動機 2
第三節 研究問題 5
第四節 研究預期貢獻 6
第五節 研究程序 7
第貳章 文獻探討 9
第一節 腦力激盪法 (Brainstorming) 9
第二節 知識本體論 (Ontology) 14
第三節 增強式學習 (Reinforcement Learning) 15
第參章 研究方法 20
第一節 環境說明與系統架構 21
第二節 Collective Brainstorming Blackboard 28
第三節 Semantic Ideation Learning Agent 33
第四節 構思評選模組 (Idea Chosen Module) 50
第肆章 實驗設計與結果 53
第一節 實驗情境設計 53
第二節 實驗目的 59
第三節 實驗結果評估 62
第伍章 系統架構 81
第一節 組成元件與功能 81
第二節 系統流程與畫面 83
第三節 iCare 整合應用平台 91
第陸章 結論與未來研究方向 95
第一節 結論 95
第二節 本研究之商業價值 98
第三節 未來研究方向 99
參考文獻 101


表 次

表3-1-1、功能對應關係………………………………………………………….…22
表3-2-1、腦力激盪會議主題之定義……………………………………………….28
表3-2-2、腦力激盪會議參與角色之定義……………………………….…………28
表3-2-3、輸入構思之定義………………………………………………………….28
表3-2-4、創意構思之定義……..…………………………………………………...29
表3-2-5、構思回合次數決定方式………………………………………...………..30
表3-2-6、概念對映關係…………………………..……………………………...…32
表3-3-1、變數對映關係…………………………………………………………….34
表3-3-2、Instance Information之格式…………………………………...…...........36
表3-3-3、Car Instance Information……………………………..........……………..38
表3-3-4、案例聯想關係……………………………………………….……………40
表3-3-5、環境狀態變數之定義…………………………………………………….41
表3-3-6、Contrast_Association演算法…………………….........………….……...43
表3-3-7、系統行為變數之定義……………………………………………………45
表3-3-8、Reward Function之定義………………………………………..………..46
表3-3-9、Instance_Association Algorithm…………………………...……………..47
表3-3-10、SILA-j之目前累積經驗…………………………………………..........48
表3-4-1、Idea_Evaluation Algorithm……………………………………….………50
表4-1-1、SILA-Son之i-Care Domain Knowledge……………………..………….56
表4-1-2、SILA-Daughter之i-Care Domain Knowledge………………..…………56
表4-1-3、SILA-FamilyDoctor之i-Care Domain Knowledge……………………...56
表4-1-4、The Mapping of Available Services and SILAs…………………….…….57
表4-1-5、實驗參數一覽表…………………………………………………………58
表4-2-1、SILA學習、決策流程與i-Care模擬情境對照表………………………60
表4-3-1、實驗一之參數一覽表……………………………………………………62
表4-3-2、Metric of Service Diversity……………………………………….….…...68
表4-3-3、The Mapping of Available Services and SILAs in Experiment 2 …….….69
表4-3-4、實驗二巨觀面分析之CBDS模式參數一覽表…………………………69
表4-3-5、實驗二微觀面分析之CBDS模式參數一覽表…………………………70
表4-3-6、「服務多樣性衡量指標」之相關數值綜合比較表………………....…..73
表4-3-9、Service Diversity Rate 綜合比較表……………………………………...75
表4-3-7、實驗三之CBDS模式參數一覽表………………………………………77
表4-3-8、實驗三與實驗二之「服務多樣性衡量指標」比較表…………………78

圖 次

圖1-5-1、研究程序……………………………………………...……..…………….8
圖2-3-1、Reinforcement Learning Framework……..................................................16
圖3-1-1、CBDS系統環境架構圖………………………………………………….21
圖3-1-2、構思過程圖………………………………………………………….…...22
圖3-2-1、Ideation Map構成階段圖………………………………….…………….29
圖3-2-2、CBDS之Reinforcement Learning Framework…………………………..33
圖3-3-1、Semantic Ideation Learning Agent Model………………………….……..34
圖3-3-2、構思本體論(Idea Ontology)………………………………………..…….35
圖3-3-3、Idea Knowledge Base Example…………………………………………...37
圖3-3-4、Transportation Domain Knowledge Example…………………………….38
圖3-3-5、Similarity Association Example………………………………………...42
圖3-3-6、Contiguity Association Example…………………………………….…....43
圖3-3-7、對比概念示意圖…………………………………………………….…...44
圖3-4-1、i-Care Services Domain Knowledge Example…………………………...52
圖4-1-1、Taxonomy of Services……………………………………………………54
圖4-1-2、Avaiable Services for Mental Needs……………….…………………….54
圖4-2-1、SILA Learning Process…………………………………………………...60
圖4-3-1、SILA - Son 之Service Value變動………………………………………63
圖4-3-2、SILA - Daughter 之Service Value變動………………………………...64
圖4-3-3、SILA – FamilyDoctor 之Service Value變動…………………………...64
圖4-3-4、二種決策模式實驗結果之創新服務種類 (Roles = 3) ………………...71
圖4-3-5、二種決策模式實驗結果之創新服務種類 (Roles = 5) ………………...71
圖4-3-6、二種決策模式實驗結果之創新服務種類 (Roles = 10) ……………….72
圖4-3-7、CBDS模式於三種構思回合次數下之創新服務種類 (Roles = 3)…….73
圖4-3-8、CBDS模式於三種構思回合次數下之創新服務種類 (Roles = 5)…….74
圖4-3-9、CBDS模式於三種構思回合次數下之創新服務種類 (Roles = 10)…...74
圖4-3-10、CBDS模式於三種價值構思個數下之創新服務種類………………...78
圖5-1-1、CBDS系統運作架構圖………………………………………..…………83
圖5-2-1、CBDS系統流程順序圖…………………………………………..………85
圖5-2-2、CBDS決策系統實驗模擬GUI畫面 - 條件設定區…………………...86
圖5-2-3、CBDS決策系統實驗模擬GUI畫面 – 決策過程與結果區…………..88
圖5-2-4、使用者更新構思排名確認介面 – 更新前……………………..………89
圖5-2-5、使用者更新構思排名確認介面 – 更新後…………………………..…90
圖5-3-1、iCare Building Blocks………………………………………………….…91
zh_TW
dc.format.extent 44896 bytes-
dc.format.extent 71328 bytes-
dc.format.extent 72415 bytes-
dc.format.extent 78059 bytes-
dc.format.extent 183465 bytes-
dc.format.extent 189813 bytes-
dc.format.extent 461051 bytes-
dc.format.extent 368521 bytes-
dc.format.extent 528375 bytes-
dc.format.extent 135381 bytes-
dc.format.extent 82603 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0093356017en_US
dc.subject (關鍵詞) 智慧型代理人zh_TW
dc.subject (關鍵詞) 腦力激盪法zh_TW
dc.subject (關鍵詞) 增強式學習zh_TW
dc.subject (關鍵詞) Intelligent Agenten_US
dc.subject (關鍵詞) Brainstormingen_US
dc.subject (關鍵詞) Reinforcement Learningen_US
dc.title (題名) 語意式構思學習模式於協同式腦力激盪決策zh_TW
dc.title (題名) Semantic Ideation Learning for Collective Brainstormingen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 1. 林隆儀譯(1984),J. Geoffrey Rawlinson著,“創造性思考與腦力激盪法”,清華管理科學圖書中心,臺北市,第1版。zh_TW
dc.relation.reference (參考文獻) 2. 李魁元(2002),“具灰色效能評斷單元之加強式學習架構”, 國立中正大學電機工程學系碩士論文,民國91年。zh_TW
dc.relation.reference (參考文獻) 3. 施乃華(2001),“創造思考教學成效之後設分析”,彰化師範大學商業教育學所碩士論文,民國90年。zh_TW
dc.relation.reference (參考文獻) 4. 許維德(1999),“在同步雙邊拍賣市場中代理人競標策略之學習”,國立清華大學資訊工程研究所碩士論文,民國88年。zh_TW
dc.relation.reference (參考文獻) 5. 陳天亮(1993),“群體軟體支援腦力激盪之績效評估”,國立中山大學資訊管理研究所碩士論文,民國82年。zh_TW
dc.relation.reference (參考文獻) 6. 陳俊隆(1999),“一個以多代理人為基礎之智慧型教學代理人”,逢甲大學資訊工程研究所碩士論文,民國88年。zh_TW
dc.relation.reference (參考文獻) 7. 連英惠(2001),“智慧型旅遊路線排程系統”,靜宜大學資訊管理學研究所碩士論文,民國90年。zh_TW
dc.relation.reference (參考文獻) 8. 黃淑惠(2002),“國小視覺藝術創造思考課程與教學之研究”,屏東師範學院視覺藝術教育研究所碩士論文,民國91年。zh_TW
dc.relation.reference (參考文獻) 9. 葉美伶(2004),“無線點對點之適境化雙贏協商機制”,輔仁大學資訊管所研究所碩士論文,民國93年。zh_TW
dc.relation.reference (參考文獻) 10. 詹瓊華(2003),“高中家政課程實施創造思考教學之成效”,國立臺灣師範大學人類發展與家庭研究所碩士論文,民國92年。zh_TW
dc.relation.reference (參考文獻) 11. 蒲怡靜(2003),“電子腦力激盪術於設計創意值之研究”,國立成功大學工業設計研究所碩士論文,民國92年。zh_TW
dc.relation.reference (參考文獻) 12. 劉佳麟(2003),“電子腦力激盪對學習成效之研究”,國立台北科技大學商業自動化與管理研究所碩士論文,民國92年。zh_TW
dc.relation.reference (參考文獻) 13. 劉昕鵬(2003),“Ontology 理論研究和應用建模——《Ontology 研究綜述》、w3c Ontology 研究組文檔以及Jena 編程應用總結”,28 March 2003zh_TW
dc.relation.reference (參考文獻) 14. 鄭寶庭(2003),“使用語意認知機制建置資源調配管理系統之研究”,中原大學資訊管理研究所碩士論文,民國92年。zh_TW
dc.relation.reference (參考文獻) 15. Borst, P., Akkermans, H. and Top, J. (1997), “Engineering Ontologies,” International Journal of Human-Computer Studies 46, 365-406, 1997.zh_TW
dc.relation.reference (參考文獻) 16. Chang, Wei-Lun and Yuan, Soe-Tsyer (2005), “Ambient iCare e-Services for Quality Aging: Framework and Roadmap,” 7-th International IEEE Conference on E-Commerce Technology 2005, July, 19-22, Munich, Germany.zh_TW
dc.relation.reference (參考文獻) 17. Dennis, A. R., Aronson, J. E., Heninger, W. G., E, Walker II, E. D. (1999), “Structuring Time and Task in Electronic Brainstorming,” MIS Quarterly 23(1).zh_TW
dc.relation.reference (參考文獻) 18. Dietterich, T. G. (2000), “An Overview of MAXQ Hierarchical Reinforcement Learning,” In B. Y. Choueiry and T. Walsh (Eds.) Proceedings of the Symposium on Abstraction, Reformulation and Approximation SARA 2000, Lecture Notes in Artificial Intelligence (pp. 26-44), New York: Springer Verlagzh_TW
dc.relation.reference (參考文獻) 19. Dietterich, T. G. (2003), “Learning and Reasoning,” Technical report, School of Electrical Engineering and Computer Science, Oregon State University, 2003.zh_TW
dc.relation.reference (參考文獻) 20. Farquhar, A., Fikes, R. & Rice, J. (1997), “Tools for assembling modular ontologies in Ontolingua,” In Proc. of Fourteenth American Association for Artificial Intelligence Conference(AAAI-97), Menlo Park, CA, AAAI/MIT Press, 436–441.zh_TW
dc.relation.reference (參考文獻) 21. Glorennec, P. Y. (2000), “Reinforcement Learning: an Overview,” ESIT 2000, Aachen, Germany.zh_TW
dc.relation.reference (參考文獻) 22. Gruber, T.R. (1993), “A Translation Approach to Portable Ontologies,” Knowledge Acquisition 5(2), 1993, 199-220.zh_TW
dc.relation.reference (參考文獻) 23. Guarino, N. & Welty, C. (2001), “Supporting Ontological Analysis of Taxonomic Relationships,” Data and Knowledge Engineering 39(1), 51-74.zh_TW
dc.relation.reference (參考文獻) 24. Impulse Research Corporation (2003), “Conferencing Technologies Save Time and Money,” Published: October 21, 2003. http://www.find.org.tw//0105/news/0105_news_disp.asp?news_id=2868zh_TW
dc.relation.reference (參考文獻) 25. Murnughan, J.K. (1981), “Group Decision Making”.zh_TW
dc.relation.reference (參考文獻) 26. Kay,G. (1995), “Effective Meetings Through Electronic Brainstorming,” Management Quarterly, Vol.35, No.4, pp.15-26.zh_TW
dc.relation.reference (參考文獻) 27. Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996), “Reinforcement learning: A survey,” J. Artif. Intell. Res., no. 4, pp. 237–285, May 1996.zh_TW
dc.relation.reference (參考文獻) 28. Noy, N. F., McGuinness, D. L. (2001), “Ontology Development 101: A Guide to Creating Your First Ontology,” Stanford Knowledge Systems Laboratory Technical Report KSL-01-05. March 2001.zh_TW
dc.relation.reference (參考文獻) 29. Osborn, A.F. (1953), “Applied Imagination : principles and procedures of creative problem-solving,” New York: Scribner’s.zh_TW
dc.relation.reference (參考文獻) 30. Scott G Isaksen (1998), “A Review of Brainstorming Research: Six Critical Issues for Inquirys,” Monograph #302 (Buffalo, NY: Creative Problem Solving Group, 1998): 11–12.zh_TW
dc.relation.reference (參考文獻) 31. Stacey, R.D. (1999), “Strategic Management and Organizational Dynamics: the Challenge of Complexity,” New York: Financial Times Prentice Hall.zh_TW
dc.relation.reference (參考文獻) 32. Sutton, R. S. (1996), “Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding,” Advances in Neural Information Processing System 8, pp. 1038-1044, MIT Press.zh_TW
dc.relation.reference (參考文獻) 33. Sutton, R. S., Barto, A. G. (1998), “Reinforcement Learning: An Introduction,” Cambridge, MA: MIT Press.zh_TW
dc.relation.reference (參考文獻) 34. Tsitsiklis, John N. (1994), “Asynchronous stochastic approximation and Q-learning. Machine Learning,” 1994, 16(3):185-202.zh_TW