dc.contributor.advisor | 謝明華 | zh_TW |
dc.contributor.advisor | Hsieh,Ming-hua | en_US |
dc.contributor.author (Authors) | 邱景暉 | zh_TW |
dc.creator (作者) | 邱景暉 | zh_TW |
dc.date (日期) | 2003 | en_US |
dc.date.accessioned | 18-Sep-2009 14:34:55 (UTC+8) | - |
dc.date.available | 18-Sep-2009 14:34:55 (UTC+8) | - |
dc.date.issued (上傳時間) | 18-Sep-2009 14:34:55 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0913560361 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/35262 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 資訊管理研究所 | zh_TW |
dc.description (描述) | 91356036 | zh_TW |
dc.description (描述) | 92 | zh_TW |
dc.description.abstract (摘要) | 美式賣權已經存在很長的時間,由於沒有公式解,目前只能利用數值分析方法(numerical analysis approach)和解析近似法(analytic approximations) 來評價它。這類的評價方法在文獻中相當多,但對這些方法的完整的比較卻相當貧乏。本文整理了27種評價方法和186種在文獻中常被引用的美式賣權契約,這些契約包含了各種不同狀態(有股利、沒有股利、價內、價平、價外、短到期日、長到期日),後續的研究者可以用這些美式賣權契約來驗證他們的方法。本文實作其中14種方法並應用於上述的186種美式賣權契約上。這14種方法包含了樹狀法、有限差分法、蒙地卡羅法與解析近似法。從這些數值的結果中,本文根據精確度與計算效率整理出各種方法的優缺點與適用的時機。 由本文之數值分析,我們得到下列幾點結論:1.Binomial Black and Scholes with Richardson extrapolation of Broadie and Detemple (1996)與Extrapolated Flexible Binomial Model of Tian (1999)這二種方法在這14種方法中,在速度與精確度的考量下是最好的方法;2.在精確度要求在root mean squared relative error大約1%的情形下,解析近似法是最快的方法;3.Least-Squares Simulation method of Longstaff and Schwartz (2001)在評價美式賣權方面並不是一個有效的方法。 | zh_TW |
dc.description.abstract (摘要) | American put option has existed for a long time. They cannot be valued by closed-form formula and require the use of numerical analysis methods and analytic approximations. There exists a great deal of methods for pricing American put option in related literatures. But a complete comparison of these methods is lacking. From literatures, we survey 27 methods and 186 commonly cited option contracts, including options on stock with dividend, non-dividend, in-the-money, at-money and out-of-money, short maturity and long maturity. In addition, we implement 14 methods, including lattice approaches, finite difference methods, Monte Carlo simulations and analytic approximations, and apply these methods to value the 186 option contracts above. From the numerical results, we summarize the advantages and disadvantages of each method in terms of speed and accuracy: 1.The binomial Black and Scholes with Richardson extrapolation of Broadie and Detemple (1996) and the extrapolated Flexible Binomial Model of Tian (1999) are both efficient improvements over the binomial method. 2.With root mean squared relative error about 1%, the analytic approximations are faster than the numerical analysis methods. 3.The Least-Squares Simulation method of Longstaff and Schwartz (2001) is not an effective method for pricing American put options. | en_US |
dc.description.tableofcontents | 1 Introduction 12 Valuation Methods 4 2.1 Lattice Approach 6 2.1.1 The Binomial Option Pricing Model 7 2.1.2 The Trinomial Option Pricing Model 8 2.1.3 The Log-Transformed Binomial Option Pricing Model 10 2.1.4 The Modified Binomial Option Pricing Model 11 2.1.5 The Modified Trinomial Option Pricing Model 11 2.1.6 The Extensible Flexible Binomial Option Pricing Model 12 2.1.7 The Binomial Black and Scholes Option Pricing Method 13 2.1.8 The Accelerated Binomial Option Pricing Method 142.2 Finite Difference Method 14 2.2.1 The Explicit Finite Difference Method 15 2.2.2 The Implicit Finite Difference Method 152.3 The Simulation Approach 16 2.3.1 Least-Squares Simulation 162.4 Analytic Approximation Methods 18 2.4.1 Barone-Adesi and Whaley(1987) method 19 2.4.2 Geske and Johnson (1984) method 20 2.4.3 Ibanez (2003) method 203 Numerical results and Comparisons 22 3.1 Selected option contracts 22 3.2 Numerical Results 29 3.3 Comparison in accuracy 34 3.4 Comparison in speed 41 3.5 Comparison in speed and accuracy trade off 424 Conclusions and future research 515 Appendix 536 Reference 57 | zh_TW |
dc.format.extent | 14522 bytes | - |
dc.format.extent | 12682 bytes | - |
dc.format.extent | 16055 bytes | - |
dc.format.extent | 16359 bytes | - |
dc.format.extent | 24016 bytes | - |
dc.format.extent | 24341 bytes | - |
dc.format.extent | 17895 bytes | - |
dc.format.extent | 86475 bytes | - |
dc.format.extent | 2397505 bytes | - |
dc.format.extent | 16973 bytes | - |
dc.format.extent | 26177 bytes | - |
dc.format.extent | 25186 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0913560361 | en_US |
dc.subject (關鍵詞) | 美式賣權 | zh_TW |
dc.subject (關鍵詞) | 美式選擇權 | zh_TW |
dc.subject (關鍵詞) | American put option | en_US |
dc.subject (關鍵詞) | American option | en_US |
dc.title (題名) | Valuation of Anerican Put Options: A Comparison of Existing Methods | zh_TW |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | 1. Abramowitz, M. and I. A. Stegun, 1970, Handbook of Mathematical Functions, Dover Publications, New York. | zh_TW |
dc.relation.reference (參考文獻) | 2. Amin, K., and A. Khanna, 1994, Convergence of American option values from discrete- to continuous-time financial models, Mathematical Finance 4, 289-304. | zh_TW |
dc.relation.reference (參考文獻) | 3. Brennan, M., and E. Schwartz, 1977, The valuation of American put options, Journal of Finance 32, 449-462. | zh_TW |
dc.relation.reference (參考文獻) | 4. Breen, R., 1991, The Accelerated Binomial Option Pricing Model, Journal of Financial and Quantitative Analysis 26, 153-164. | zh_TW |
dc.relation.reference (參考文獻) | 5. Bunch, D., and H. Johnson, 1992, A Simple and Numerically Efficient Valuation Method for American Puts Using a Modified Geske-Johnson Approach, Journal of Finance 47, 809-816. | zh_TW |
dc.relation.reference (參考文獻) | 6. Boyle, P., M. Broadie, and P. Glasserman, 1997, Monte Carlo methods for security pricing, Journal of Economic Dynamics & Control 21, 1267-1322. | zh_TW |
dc.relation.reference (參考文獻) | 7. Barone-Adesi, G., and R. Whaley, 1987, Efficient Analytic Approximation of American Option Values, Journal of Finance 42, 301.-320 | zh_TW |
dc.relation.reference (參考文獻) | 8. Broadie M., and D. Jerome, 1996, American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods, The Review of Financial Studies 9, 1211-1250. | zh_TW |
dc.relation.reference (參考文獻) | 9. Cox, J. C., S. A. Ross, and M. Rubinstein, 1979, Option Pricing: A Simplified Approach, Journal of Financial Economics 7, 229-263 | zh_TW |
dc.relation.reference (參考文獻) | 10. Carr, P., R. Jarrow, and R. Myneni, 1992, Alternative characterizations of American put options, Mathematical Finance 2, 87-106. | zh_TW |
dc.relation.reference (參考文獻) | 11. Drezner Z., 1978, Computation of the Bivariate Normal Integral, Mathematics of Computation, 32, 277-279. | zh_TW |
dc.relation.reference (參考文獻) | 12. David S. B. and H. Johnson, 2000, The American Put Option and Its Critical Stock Price, Journal of Finance, 55, 2333-2357. | zh_TW |
dc.relation.reference (參考文獻) | 13. Geske, R., and H. E. Johnson, 1984, The American Put Option Valued Analytically, Journal of Finance 23, 1511-1524. | zh_TW |
dc.relation.reference (參考文獻) | 14. Hull, J. C., and A. White, 1988, The Use of the Control Variate Technique in Option Pricing, Journal of Financial and Quantitative Analysis 23, 237-251 | zh_TW |
dc.relation.reference (參考文獻) | 15. Hull, J. C., and A. White, 1990, Valuing Derivative Securities Using the Explicit Finite Difference Method, Journal of Financial and Quantitative Analysis 25, 87-100. | zh_TW |
dc.relation.reference (參考文獻) | 16. Huang J., M. G. Subrahmanyam, and G. G. Yu, 1996, Pricing and Hedging American Options: A Recursive Integration Method, The Review of Financial Studies 9, 277-300. | zh_TW |
dc.relation.reference (參考文獻) | 17. Hull, J. C., 2003, Options, Futures, and Other Derivative Securities, 4th edition. | zh_TW |
dc.relation.reference (參考文獻) | 18. Ibanez A., 2003, Robust pricing of the American put option: A note on Richardson extrapolation and the early exercise premium, Management Science 49, 1210-1228 | zh_TW |
dc.relation.reference (參考文獻) | 19. Johnson, H. E., 1983, An Analytic Approximation for the American Put Price, Journal of Financial and Quantitative Analysis 18, 141-149. | zh_TW |
dc.relation.reference (參考文獻) | 20. Kim J., 1990, The Analytic Valuation of American Options, The Review of Financial Studies 3, 547-572. | zh_TW |
dc.relation.reference (參考文獻) | 21. Kamrad B., and P. Ritchken, 1991, Multinomial approximating models for options with k-state variables, Management Science 37, 1640-1652 | zh_TW |
dc.relation.reference (參考文獻) | 22. Longstaff F., and E. Schwartz, 2001, Valuing American Options by Simulation:A Simple Least-Squares Approach, The Review of Financial Studies 14, 113-147 | zh_TW |
dc.relation.reference (參考文獻) | 23. Leisen, and P. J. Dietmar, 1998, Pricing the American put option: A detailed convergence analysis for binomial models, Journal of Economic Dynamics & Control 22, 1419-1435. | zh_TW |
dc.relation.reference (參考文獻) | 24. Leisen, and P. J. Dietmar, 1999, The random-time binomial model, Journal of Economic Dynamics & Control 23, 1355-1386. | zh_TW |
dc.relation.reference (參考文獻) | 25. Moreno M., and J. F. Navas., 2003, On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives, Review of Derivatives Research 6, 107-128 | zh_TW |
dc.relation.reference (參考文獻) | 26. Nengjiu J., and R. Zhong, 1999, An approximate formula for pricing American options, Journal of Derivatives 7, 31-41. | zh_TW |
dc.relation.reference (參考文獻) | 27. Parkinson M., 1977, Option Pricing – The American Put, The Journal of Business 50, 21-36. | zh_TW |
dc.relation.reference (參考文獻) | 28. Pantazopoulos K. N., E. N. Houstis, and S. Kortesis, 1998, Front-Tracking Finite Difference Methods for the Valuation of American Options, Computational Economics 12, 255-273. | zh_TW |
dc.relation.reference (參考文獻) | 29. Rogers L. C. G., 2002, Monte Carlo valuation of American options, Mathematical Finance 12, 271-286. | zh_TW |
dc.relation.reference (參考文獻) | 30. Stephen E., 1996, A note on modified lattice approaches to option pricing, Journal of Futures Markets 16, 585-594. | zh_TW |
dc.relation.reference (參考文獻) | 31. Sullivan M, 2000, Valuing American put options using Gaussian quadrature, The Review of Financial Studies 13, 75-94. | zh_TW |
dc.relation.reference (參考文獻) | 32. Trigeorgis, L., 1991, A Log-Transformed Binomial Numerical Analysis Method for Valuing Complex Multi-Option Investments, Journal of Financial and Quantitative Analysis 26, 309-326 | zh_TW |
dc.relation.reference (參考文獻) | 33. Tian, Y., 1999, A flexible binomial option pricing model, The Journal of Futures Markets 19, 817-843. | zh_TW |