Publications-Theses

Title用馬可夫鏈蒙地卡羅法估計隨機波動模型:台灣匯率市場的實證研究
Creator賴耀君
Lai,Simon
Contributor毛維凌
賴耀君
Lai,Simon
Key Words隨機波動模型
馬可夫鏈蒙地卡羅法
貝氏估計
適應性拒絕抽樣法
槓桿效果
厚尾分配
Gibbs sampler
scale mixture
Metropolis-Hastings
(c) Geweke convergence diagnostic
Date2002
Date Issued18-Sep-2009 15:52:30 (UTC+8)
Summary針對金融時序資料變異數不齊一的性質,隨機波動模型除了提供於ARCH族外的另一選擇;且由於其設定隱含波動本身亦為一個隨機波動函數,藉由設定隨時間改變且自我相關的條件變異數,使得隨機波動模型較ARCH族來得有彈性且符合實際。傳統上處理隨機波動模型的參數估計往往需要面對到複雜的多維積分,此問題可藉由貝氏分析裡的馬可夫鏈蒙地卡羅法解決。本文主要的探討標的,即在於利用馬可夫鏈蒙地卡羅法估計美元/新台幣匯率隨機波動模型參數。除原始模型之外,模型的擴充分為三部分:其一為隱含波動的二階自我回歸模型;其二則為藉由基本模型的修改,檢測匯率市場上的槓桿效果;最後,我們嘗試藉由加入scale mixture的方式以驗證金融時序資料中常見的厚尾分配。
參考文獻 1. Black, F. (1976). Studies of stock market volatility changes. Proceedings of the American Statistical Association, Business and Economic Statistics Section, 177-181.
2. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307-327.
3. Brooks, S. P. (1998). Markov chain Monte Carlo method and its application. The Statistician. 47, 69-100.
4. Casella, G., George, E.I., (1992). Explaining the Gibbs sampler. The American Statistician 46,167-174.
5. Cowles, M. and Carlin, B. (1996). “Markov chain Monte Carlo convergence diagnostics: A comparative study,” J. Amer. Statist. Assoc., vol. 91, pp.883–904.
6. Danielsson, J. (1994). Stochastic volatility in asset prices: Estimation with simulated maximum likelihood. Journal of Econometrics 64, 375-400.
7. Engle, R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom ination. Econometrica 50, 987-1007.
8. Fridman, M. and L. Harris (1998). A maximum likelihood approach for non-Gaussian stochastic volatility models. Journal of Business and Economic Statistics 16, 284-291.
9. Gallant, A.R., Hsieh, D., Tauchen, G. (1997). Estimation of stochastic volatility models with diagnostics. Journal of Econometrics 81, 1, 159–192.
10. Gelfand, A.E., and Smith, A.F.M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398-409.
11. Gelfand, A.E. (1997). Gibbs Sampling, In: Encyclopedia of Statistical Sciences (update), Eds. J. Kotz, C. Read, D. Banks, J. Wiley and Sons, New York, 283-291.
12. Gelman, A. and Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-511.
13. Geman, S., and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.
14. Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bayesian Statistics 4, eds. J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith. Oxford: Oxford University Press.
15. Geweke, J., (1993). Bayesian treatment of the independent student-t linear model. Journal of Applied Econometrics 8, S19–S40.
16. Geweke, J. (1994). Comment on Bayesian analysis of stochastic volatility. Journal of Business and Economics Statistics 12 (4), 371–417.
17. Geyer, C. J. (1992). Practical Markov chain Monte Carlo. Statistical Science, 7,473--483.
18. Gilks, W. R. (1992). Derivative-free Adaptive Rejection Sampling for Gibbs Sampling. Bayesian Statistics 4, (eds. Bernardo, J., Berger, J., Dawid, A. P., and Smith, A. F. M.)Oxford University Press, 641-649.
19. Gilks, W. R., P. Wild (1993), Adaptive Rejection Sampling for Gibbs Sampling. Applied Statistics, Vol. 41, Issue 2, 337-348.
20. Gilks, W.R., S. Richardson, and D.J. Spiegelhalter (1996). Markov Chain Monte Carlo in Practice. Chapman & Hall, London.
21. Glosten, L., R. Jagannathan, and D. Runkle (1993). On the relation between the Expected value and the volatility of the nominal excess return on stocks. Journal of Finance 48, 1779-1801.
22. Harvey, A. (1990). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, New York.
23. Harvey, A.C., E. Ruiz, and N. Shephard (1994). Multivariate stochastic variance models. Review of Economic Studies 61, 247-264.
24. Harvey, A.C. and N. Shephard (1996), Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns. Journal of Business and Economic Statistics, 14, 429-434.
25. Heidelberger, P., and P. D. Welch. (1983). Simulation run length control in the presence of an initial transient.Operations Research 31, 6, 1109–1144.
26. Hogg, R. V. and A. T. Craig (1995). Introduction to Mathematical Statistics, 5th edition. Prentice-Hall.
27. Jacquier, E, N.G. Polson, and P.E. Rossi (1994). Bayesian analysis of stochastic volatility models. Journal of Business and Economic Statistics 12, 371-389.
28. Jacquier, E, N.G. Polson, and P.E. Rossi (2003). Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. Working paper.
29. Kim S., Shephard N., and Chib S. (1998). Stochastic volatility: likelihood inference and comparison with ARCH models. Review of Economic Studies 65, 361-393.
30. Melino, A. and S.M. Turnbull (1990). Pricing foreign currency options with stochastic volatility.Journal of Econometrics 45, 239-265.
31. Meyer, R., and J.Yu (2000). BUGS for a Bayesian analysis of stochastic volatility models. The Econometrics Journal, 3(2), 198-215.
32. Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods. Dept. of Computer Science, University Toronto, 1993.
33. Neal R.M. (1997). Markov chain Monte Carlo methods based on "slicing` the density function. Technical Report No. 9722. Department of Statistics, University of Toronto.
34. Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach, Econometrica 59: 347-370.
35. Robert, C. P. and G. Casella (1999). Monte Carlo statistical methods. Springer, New York.
36. Ross, S. M. (2000). Introduction to probability models, 7th ed. Harcourt Academic Press.
37. Shephard, N. and M.K. Pitt (1997). Likelihood analysis of non-Gaussian measurement time series. Biometrika, 84, 653-667.
38. Tauchen, G., Pitts M. (1983). The price variability-volume relationship on speculative markets. Econometrica 51, 485-505.
39. Taylor, S.J. (1982). Financial returns modelled by the product of two stochastic processes | a study of the daily sugar prices 1961-75. In Anderson, O.D., Editor, Time Series Analysis: Theory and Practice, 1, 203-226. North-Holland, Amsterdam.
40. Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). The Annals of Statistics, 22, 1701--1762.
41. Tsay, R. S. (2002). Analysis of Financial Time Series. A Wiley Interscience Publication.
42. Yu, J., Yang, Z., (2003). A class of nonlinear stochastic volatility models. Working paper.
Description碩士
國立政治大學
經濟研究所
87258020
91
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0087258020
Typethesis
dc.contributor.advisor 毛維凌zh_TW
dc.contributor.author (Authors) 賴耀君zh_TW
dc.contributor.author (Authors) Lai,Simonen_US
dc.creator (作者) 賴耀君zh_TW
dc.creator (作者) Lai,Simonen_US
dc.date (日期) 2002en_US
dc.date.accessioned 18-Sep-2009 15:52:30 (UTC+8)-
dc.date.available 18-Sep-2009 15:52:30 (UTC+8)-
dc.date.issued (上傳時間) 18-Sep-2009 15:52:30 (UTC+8)-
dc.identifier (Other Identifiers) G0087258020en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/35729-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 經濟研究所zh_TW
dc.description (描述) 87258020zh_TW
dc.description (描述) 91zh_TW
dc.description.abstract (摘要) 針對金融時序資料變異數不齊一的性質,隨機波動模型除了提供於ARCH族外的另一選擇;且由於其設定隱含波動本身亦為一個隨機波動函數,藉由設定隨時間改變且自我相關的條件變異數,使得隨機波動模型較ARCH族來得有彈性且符合實際。傳統上處理隨機波動模型的參數估計往往需要面對到複雜的多維積分,此問題可藉由貝氏分析裡的馬可夫鏈蒙地卡羅法解決。本文主要的探討標的,即在於利用馬可夫鏈蒙地卡羅法估計美元/新台幣匯率隨機波動模型參數。除原始模型之外,模型的擴充分為三部分:其一為隱含波動的二階自我回歸模型;其二則為藉由基本模型的修改,檢測匯率市場上的槓桿效果;最後,我們嘗試藉由加入scale mixture的方式以驗證金融時序資料中常見的厚尾分配。zh_TW
dc.description.tableofcontents 一 研究動機與研究目標
二 文獻回顧
2.1 ARCH族模型與隨機波動模型之回顧
2.2貝氏估計與馬可夫鏈蒙地卡羅法
2.2.1 幾個重要的馬可夫鏈相關性質
2.2.2 貝氏估計
2.2.3 馬可夫鏈蒙地卡羅法
2.2.4 Gibbs sampler
2.2.5 Metropolis-Hastings演算法
2.2.6 適應性拒絕抽樣法
2.2.7 馬可夫鏈的疊代次數與抽樣準則
2.2.7.1序列收斂性質的檢定
2.2.7.2抽樣法
2.2.7.3疊代次數的決定依據
三 模型設定與計量方法
3.1 隨機波動模型的設定
3.2 馬可夫鏈蒙地卡羅估計程序
3.2.1參數設定與機率分配假設
3.2.2 Gibbs sampler演算過程
3.3 SV模型之其它衍生模型
3.3.1 Model 2: AR(2)模型
3.3.2 Model 3:槓桿效果的檢定
3.3.3 Model 4:厚尾隨機波動模型
四 實證研究與探討
4.1 資料來源與軟體應用
4.2 馬可夫鏈的模擬程序與抽樣設定
4.3 實證結果與分析
4.3.1 Model 1的實驗結果與分析
4.3.2 Model 2的實驗結果與分析
4.3.3 Model 3的實驗結果與分析
4.3.4 Model 4的實驗結果與分析
五 結論與展望
六 參考文獻
七 附錄
A. Model 1 的程式碼
B. Model 2 的程式碼
C. Model 3 的程式碼
D. Model 4 的程式碼
zh_TW
dc.format.extent 48080 bytes-
dc.format.extent 71361 bytes-
dc.format.extent 65698 bytes-
dc.format.extent 59753 bytes-
dc.format.extent 90481 bytes-
dc.format.extent 251922 bytes-
dc.format.extent 133382 bytes-
dc.format.extent 1327575 bytes-
dc.format.extent 105989 bytes-
dc.format.extent 46879 bytes-
dc.format.extent 44981 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0087258020en_US
dc.subject (關鍵詞) 隨機波動模型zh_TW
dc.subject (關鍵詞) 馬可夫鏈蒙地卡羅法zh_TW
dc.subject (關鍵詞) 貝氏估計zh_TW
dc.subject (關鍵詞) 適應性拒絕抽樣法zh_TW
dc.subject (關鍵詞) 槓桿效果zh_TW
dc.subject (關鍵詞) 厚尾分配zh_TW
dc.subject (關鍵詞) Gibbs sampleren_US
dc.subject (關鍵詞) scale mixtureen_US
dc.subject (關鍵詞) Metropolis-Hastingsen_US
dc.subject (關鍵詞) (c) Geweke convergence diagnosticen_US
dc.title (題名) 用馬可夫鏈蒙地卡羅法估計隨機波動模型:台灣匯率市場的實證研究zh_TW
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 1. Black, F. (1976). Studies of stock market volatility changes. Proceedings of the American Statistical Association, Business and Economic Statistics Section, 177-181.zh_TW
dc.relation.reference (參考文獻) 2. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307-327.zh_TW
dc.relation.reference (參考文獻) 3. Brooks, S. P. (1998). Markov chain Monte Carlo method and its application. The Statistician. 47, 69-100.zh_TW
dc.relation.reference (參考文獻) 4. Casella, G., George, E.I., (1992). Explaining the Gibbs sampler. The American Statistician 46,167-174.zh_TW
dc.relation.reference (參考文獻) 5. Cowles, M. and Carlin, B. (1996). “Markov chain Monte Carlo convergence diagnostics: A comparative study,” J. Amer. Statist. Assoc., vol. 91, pp.883–904.zh_TW
dc.relation.reference (參考文獻) 6. Danielsson, J. (1994). Stochastic volatility in asset prices: Estimation with simulated maximum likelihood. Journal of Econometrics 64, 375-400.zh_TW
dc.relation.reference (參考文獻) 7. Engle, R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom ination. Econometrica 50, 987-1007.zh_TW
dc.relation.reference (參考文獻) 8. Fridman, M. and L. Harris (1998). A maximum likelihood approach for non-Gaussian stochastic volatility models. Journal of Business and Economic Statistics 16, 284-291.zh_TW
dc.relation.reference (參考文獻) 9. Gallant, A.R., Hsieh, D., Tauchen, G. (1997). Estimation of stochastic volatility models with diagnostics. Journal of Econometrics 81, 1, 159–192.zh_TW
dc.relation.reference (參考文獻) 10. Gelfand, A.E., and Smith, A.F.M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398-409.zh_TW
dc.relation.reference (參考文獻) 11. Gelfand, A.E. (1997). Gibbs Sampling, In: Encyclopedia of Statistical Sciences (update), Eds. J. Kotz, C. Read, D. Banks, J. Wiley and Sons, New York, 283-291.zh_TW
dc.relation.reference (參考文獻) 12. Gelman, A. and Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-511.zh_TW
dc.relation.reference (參考文獻) 13. Geman, S., and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.zh_TW
dc.relation.reference (參考文獻) 14. Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bayesian Statistics 4, eds. J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith. Oxford: Oxford University Press.zh_TW
dc.relation.reference (參考文獻) 15. Geweke, J., (1993). Bayesian treatment of the independent student-t linear model. Journal of Applied Econometrics 8, S19–S40.zh_TW
dc.relation.reference (參考文獻) 16. Geweke, J. (1994). Comment on Bayesian analysis of stochastic volatility. Journal of Business and Economics Statistics 12 (4), 371–417.zh_TW
dc.relation.reference (參考文獻) 17. Geyer, C. J. (1992). Practical Markov chain Monte Carlo. Statistical Science, 7,473--483.zh_TW
dc.relation.reference (參考文獻) 18. Gilks, W. R. (1992). Derivative-free Adaptive Rejection Sampling for Gibbs Sampling. Bayesian Statistics 4, (eds. Bernardo, J., Berger, J., Dawid, A. P., and Smith, A. F. M.)Oxford University Press, 641-649.zh_TW
dc.relation.reference (參考文獻) 19. Gilks, W. R., P. Wild (1993), Adaptive Rejection Sampling for Gibbs Sampling. Applied Statistics, Vol. 41, Issue 2, 337-348.zh_TW
dc.relation.reference (參考文獻) 20. Gilks, W.R., S. Richardson, and D.J. Spiegelhalter (1996). Markov Chain Monte Carlo in Practice. Chapman & Hall, London.zh_TW
dc.relation.reference (參考文獻) 21. Glosten, L., R. Jagannathan, and D. Runkle (1993). On the relation between the Expected value and the volatility of the nominal excess return on stocks. Journal of Finance 48, 1779-1801.zh_TW
dc.relation.reference (參考文獻) 22. Harvey, A. (1990). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, New York.zh_TW
dc.relation.reference (參考文獻) 23. Harvey, A.C., E. Ruiz, and N. Shephard (1994). Multivariate stochastic variance models. Review of Economic Studies 61, 247-264.zh_TW
dc.relation.reference (參考文獻) 24. Harvey, A.C. and N. Shephard (1996), Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns. Journal of Business and Economic Statistics, 14, 429-434.zh_TW
dc.relation.reference (參考文獻) 25. Heidelberger, P., and P. D. Welch. (1983). Simulation run length control in the presence of an initial transient.Operations Research 31, 6, 1109–1144.zh_TW
dc.relation.reference (參考文獻) 26. Hogg, R. V. and A. T. Craig (1995). Introduction to Mathematical Statistics, 5th edition. Prentice-Hall.zh_TW
dc.relation.reference (參考文獻) 27. Jacquier, E, N.G. Polson, and P.E. Rossi (1994). Bayesian analysis of stochastic volatility models. Journal of Business and Economic Statistics 12, 371-389.zh_TW
dc.relation.reference (參考文獻) 28. Jacquier, E, N.G. Polson, and P.E. Rossi (2003). Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. Working paper.zh_TW
dc.relation.reference (參考文獻) 29. Kim S., Shephard N., and Chib S. (1998). Stochastic volatility: likelihood inference and comparison with ARCH models. Review of Economic Studies 65, 361-393.zh_TW
dc.relation.reference (參考文獻) 30. Melino, A. and S.M. Turnbull (1990). Pricing foreign currency options with stochastic volatility.Journal of Econometrics 45, 239-265.zh_TW
dc.relation.reference (參考文獻) 31. Meyer, R., and J.Yu (2000). BUGS for a Bayesian analysis of stochastic volatility models. The Econometrics Journal, 3(2), 198-215.zh_TW
dc.relation.reference (參考文獻) 32. Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods. Dept. of Computer Science, University Toronto, 1993.zh_TW
dc.relation.reference (參考文獻) 33. Neal R.M. (1997). Markov chain Monte Carlo methods based on "slicing` the density function. Technical Report No. 9722. Department of Statistics, University of Toronto.zh_TW
dc.relation.reference (參考文獻) 34. Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach, Econometrica 59: 347-370.zh_TW
dc.relation.reference (參考文獻) 35. Robert, C. P. and G. Casella (1999). Monte Carlo statistical methods. Springer, New York.zh_TW
dc.relation.reference (參考文獻) 36. Ross, S. M. (2000). Introduction to probability models, 7th ed. Harcourt Academic Press.zh_TW
dc.relation.reference (參考文獻) 37. Shephard, N. and M.K. Pitt (1997). Likelihood analysis of non-Gaussian measurement time series. Biometrika, 84, 653-667.zh_TW
dc.relation.reference (參考文獻) 38. Tauchen, G., Pitts M. (1983). The price variability-volume relationship on speculative markets. Econometrica 51, 485-505.zh_TW
dc.relation.reference (參考文獻) 39. Taylor, S.J. (1982). Financial returns modelled by the product of two stochastic processes | a study of the daily sugar prices 1961-75. In Anderson, O.D., Editor, Time Series Analysis: Theory and Practice, 1, 203-226. North-Holland, Amsterdam.zh_TW
dc.relation.reference (參考文獻) 40. Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). The Annals of Statistics, 22, 1701--1762.zh_TW
dc.relation.reference (參考文獻) 41. Tsay, R. S. (2002). Analysis of Financial Time Series. A Wiley Interscience Publication.zh_TW
dc.relation.reference (參考文獻) 42. Yu, J., Yang, Z., (2003). A class of nonlinear stochastic volatility models. Working paper.zh_TW