Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

Title微弱光源下之人臉辨識
Creator李黛雲
Tai-Yun Li
Contributor廖文宏
Wen-Hung Liao
李黛雲
Tai-Yun Li
Key Wordsface recognition
illuminaiton
feature based
low illumination
Date2002
Date Issued18-Sep-2009 18:25:57 (UTC+8)
Summary本論文的主要目的是建立一套人臉辨識系統,即使在光源不足或甚至是完全黑暗的環境下也能夠正確地進行身分辨識。在完全黑暗的情形下,我們可以利用具有夜視功能(近紅外線)的攝影機來擷取影像,然而,近紅外線影像通常呈現亮度非常不均勻的情形,導致我們無法直接利用現有的人臉辨識系統來作辨識。因此,我們首先觀察近紅外線影像的特性,然後依據此特性提出一個影像成像的模型;接著,利用同構增晰的原理來減低因成像過程所造成的不均勻現象;經由實驗的結果,我們得知現有的全域式人臉辨識系統無法有效地處理近紅外線影像,因此,我們提出了一個新的區域式的人臉辨識演算法,針對光線不足的情況作特殊考量,以得到較佳的辨識結果。本論文實作的系統是以最近點分類法來作身份辨識,在現有的32個人臉影像資料集中,正確的辨識率達75%。
The main objective of this thesis is to develop a face recognition system that could recognize human faces even when the surrounding environment is totally dark. The images of objects in total darkness can be captured using a relatively low-cost camcorder with the NightShot® function. By overcoming the illumination factor, a face recognition system would continue to function independent of the surrounding lighting condition. However, images acquired exhibit non-uniformity due to irregular illumination and current face recognition systems may not be put in use directly. In this thesis, we first investigate the characteristics of NIR images and propose an image formation model. A homomorphic processing technique built upon the image model is then developed to reduce the artifact of the captured images. After that, we conduct experiments to show that existing holistic face recognition systems perform poorly with NIR images. Finally, a more robust feature-based method is proposed to achieve better recognition rate under low illumination. A nearest neighbor classifier using Euclidean distance function is employed to recognize familiar faces from a database. The feature-based recognition method we developed achieves a recognition rate of 75% on a database of 32 people, with one sample image for each subject.
TABLE OF CONTENTS
     CHAPTER 1 Introduction 7
     CHAPTER 2 Related Work 6
     CHAPTER 3 Homomorphic Preprocessing 11
     3. 1 Characteristics of NIR images 12
     3.1.1 NIR Image Formation 12
     3.1.2 NIR Image Characteristics 12
     3.1.3 Gaussian Illumination Model 13
     3.2 Homomorphic Filtering Techniques 15
     3.2.1 Separating the Illumination Component 15
     3.2.2 Homomorphic Filtering 17
     3.2.3 NIR Image Correction Results 18
     3.2.4 Color Image Correction Results (RGB, HSV Comparison) 22
     CHAPTER 4 NIR Image Classification 25
     CHAPTER 5 Holistic Face Recognition Algorithms and Evaluation Results 33
     5.1 Holistic Methods 34
     5.2 Feature-Based Methods 35
     5.3 Evaluating Holistic Face Recognition Algorithms 35
     CHAPTER 6 Facial Feature Detection Algorithm 42
     6.1 Feature-Based Facial Feature Detection Algorithm 42
     6.2 Facial Feature Detection Results 54
     CHAPTER 7 Proposed Face Recognition Algorithm 56
     7.1 Geometric Measures 56
     7.2 The Feature Set of Geometric Measures 57
     7.3 Recognition 61
     7.4 Experimental Results and Discussion 63
     CHAPTER 8 Conclusions 68
     References 70
參考文獻 【1】 W. Zhao, R. Chellappa, A. Rosenfeld, and P. J. Phillips. 2000. Face recognition: A literature survey. Technical Report CAR-TR-948.
【2】 M.-H. Yang, D. Kriegman, and N. Ahuja. 2002. Detecting faces in images: A survey. IEEE Trans. on Pattern Analysis and Machine Intelligence 24:1 34-58.
【3】 C. H. Jones, S. G. Burnay, and T. L. Williams. Applications of Thermal Imaging, Adam Hilger, 1988.
【4】 M. Bichsel. 1998. Analyzing a scene’s picture set under varying lighting. Computer Vision and Image Understanding 71:3 271-280.
【5】 R. C. Gonzalez and R. E. Woods. Digital Image Processing, Prentice Hall, 2002.
【6】 KAYA http://www.kaya-optics.com/products/applications.shtml
【7】 Y. Moses, Y. Adini, and S. Ullman. 1994. Face recognition: The problem of compensating for changes in illumination direction. European of Conference on Computer Vision 286-296.
【8】 P.N. Belhumeur, J.P. Hespanha and D.J. Kriegman. 1997. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. on Pattern Analysis and Machine Intelligence 19:7 711-720.
【9】 Y. Adini, Y. Moses and S. Ullman. 1997. Face recognition: The problem of compensating for changes in illumination direction. IEEE Trans. on Pattern Analysis and Machine Intelligence 19:7 721-732.
【10】 D.W. Jacobs, P.N. Belhumeur, and R. Basri. 1998. Comparing images under variable illumination. Proc. of IEEE Conference on Computer Vision and Pattern Recognition 610-617.
【11】 P. Hallman. 1994. A low-dimensional representation of human faces for arbitrary lighting conditions. Proc. of IEEE Conference on Computer Vision and Pattern Recognition 995-999.
【12】 W. Zhao. 1999. Robust image based 3D face recognition. PhD Thesis, University of Maryland.
【13】 A. Georghiades P. N. Belhumeur and D. Kriegman. 2001. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. on Pattern Analysis and Machine Intelligence 23:6 643-660.
【14】 W. Zhao and R. Chellappa. 2000. Illumination-insensitive face recognition using symmetric shape-from-shading. Proc. of IEEE Conference on Computer Vision and Pattern Recognition 1286-1293.
【15】 F. J. Prokoski and R. B. Riedel, Infrared identification of faces and body parts, in A. Jain, R. Bolle, and S. Pankanti. (editors), Biometrics - Personal Identification in Networked Society, Kluwer Academic, 1999.
【16】 J. Wilder, P. J. Phillips, C. Jiang, S. Wiener. 1996. Comparison of visible and infra-red imagery for face recognition. Proc. of International Conference on Automatic Face and Gesture Recognition 182-187.
【17】 B. H. Brinkman, A. Manduca, and R. A. Robb. 1998. Optimized homomorphic un-sharp masking for MR grayscale inhomogeneity correction. IEEE Trans. on Medical Imaging 17:2 161-171.
【18】 R. Chellappa, C. Wilson, and S. Sirohey. 1995. Human and machine recognition of faces: A survey. Proc. of the IEEE 83:5 705-740.
【19】 M. A. Turk and A. P. Pentland. 1991. Face recognition using eigenfaces. Proc. of IEEE Conference on Computer Vision and Pattern Recognition 586-591.
【20】 M. D. Levine. Vision in Man and Machine, McGraw-Hill, 1985.
【21】 Mario Livio. The Golden Ratio: The story of phi, the World’s Most Astonishing Number, Broadway Books, 2002.
【22】 G. Rhodes. 1988. Looking at faces: First-order and second-order features as determinants of facial appearance. Perception 17:43-63.
【23】 K.H. Wong, H.M. Law, and P.W.M. Tsang. 1989. A system for recognizing human faces. Proc. of IEEE Conference on Acoustic, Speech, Signal Processing 1638-1642.
【24】 I. Craw, H. Ellis, and J.R. Lishman. 1987. Automatic extraction of face-features. Pattern Recognition Letters 5:183-187.
【25】 T. Sakai, M. Nagao, and T. Kanade. 1972. Computer analysis and classification of photographics of human faces. Proc. of 1st USA–Japan Computer Conference 55-62.
【26】 H. Mannaert and A. Oosterlinck. 1990. Self-organizing system for analysis and identification of human faces. Procs. of Applications of Digital Processing 1349 227-232.
【27】 R. Rao and D. Ballard. 1995. Natural basis functions and topographics memory for face recognition. International Joint Conference on Artificial Intelligence 10-17.
【28】 Y. Tian, T. Kanade and J. Cohn. 2001. Recognizing action units for facial expression analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 23:2 97-115.
【29】 P. Penev, J. Atick. 1996. Local feature analysis: A general statistical theory for object representation. Neural Systems 7:3 477-500.
【30】 Y. Tian, T. Kanade, and J. Cohn. 2000. Dual-state parametric eye tracking. Proc. of IEEE Conference on Automatic Face and Gesture Recognition 110-115.
【31】 I. Craw, D. Tock, and A. Bennett. 1992. Finding face features. Proc. of the First European Conference on Computer Vision 92-96.
Description碩士
國立政治大學
資訊科學學系
90753001
91
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0090753001
Typethesis
dc.contributor.advisor 廖文宏zh_TW
dc.contributor.advisor Wen-Hung Liaoen_US
dc.contributor.author (Authors) 李黛雲zh_TW
dc.contributor.author (Authors) Tai-Yun Lien_US
dc.creator (作者) 李黛雲zh_TW
dc.creator (作者) Tai-Yun Lien_US
dc.date (日期) 2002en_US
dc.date.accessioned 18-Sep-2009 18:25:57 (UTC+8)-
dc.date.available 18-Sep-2009 18:25:57 (UTC+8)-
dc.date.issued (上傳時間) 18-Sep-2009 18:25:57 (UTC+8)-
dc.identifier (Other Identifiers) G0090753001en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/36374-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 90753001zh_TW
dc.description (描述) 91zh_TW
dc.description.abstract (摘要) 本論文的主要目的是建立一套人臉辨識系統,即使在光源不足或甚至是完全黑暗的環境下也能夠正確地進行身分辨識。在完全黑暗的情形下,我們可以利用具有夜視功能(近紅外線)的攝影機來擷取影像,然而,近紅外線影像通常呈現亮度非常不均勻的情形,導致我們無法直接利用現有的人臉辨識系統來作辨識。因此,我們首先觀察近紅外線影像的特性,然後依據此特性提出一個影像成像的模型;接著,利用同構增晰的原理來減低因成像過程所造成的不均勻現象;經由實驗的結果,我們得知現有的全域式人臉辨識系統無法有效地處理近紅外線影像,因此,我們提出了一個新的區域式的人臉辨識演算法,針對光線不足的情況作特殊考量,以得到較佳的辨識結果。本論文實作的系統是以最近點分類法來作身份辨識,在現有的32個人臉影像資料集中,正確的辨識率達75%。zh_TW
dc.description.abstract (摘要) The main objective of this thesis is to develop a face recognition system that could recognize human faces even when the surrounding environment is totally dark. The images of objects in total darkness can be captured using a relatively low-cost camcorder with the NightShot® function. By overcoming the illumination factor, a face recognition system would continue to function independent of the surrounding lighting condition. However, images acquired exhibit non-uniformity due to irregular illumination and current face recognition systems may not be put in use directly. In this thesis, we first investigate the characteristics of NIR images and propose an image formation model. A homomorphic processing technique built upon the image model is then developed to reduce the artifact of the captured images. After that, we conduct experiments to show that existing holistic face recognition systems perform poorly with NIR images. Finally, a more robust feature-based method is proposed to achieve better recognition rate under low illumination. A nearest neighbor classifier using Euclidean distance function is employed to recognize familiar faces from a database. The feature-based recognition method we developed achieves a recognition rate of 75% on a database of 32 people, with one sample image for each subject.en_US
dc.description.abstract (摘要) TABLE OF CONTENTS
     CHAPTER 1 Introduction 7
     CHAPTER 2 Related Work 6
     CHAPTER 3 Homomorphic Preprocessing 11
     3. 1 Characteristics of NIR images 12
     3.1.1 NIR Image Formation 12
     3.1.2 NIR Image Characteristics 12
     3.1.3 Gaussian Illumination Model 13
     3.2 Homomorphic Filtering Techniques 15
     3.2.1 Separating the Illumination Component 15
     3.2.2 Homomorphic Filtering 17
     3.2.3 NIR Image Correction Results 18
     3.2.4 Color Image Correction Results (RGB, HSV Comparison) 22
     CHAPTER 4 NIR Image Classification 25
     CHAPTER 5 Holistic Face Recognition Algorithms and Evaluation Results 33
     5.1 Holistic Methods 34
     5.2 Feature-Based Methods 35
     5.3 Evaluating Holistic Face Recognition Algorithms 35
     CHAPTER 6 Facial Feature Detection Algorithm 42
     6.1 Feature-Based Facial Feature Detection Algorithm 42
     6.2 Facial Feature Detection Results 54
     CHAPTER 7 Proposed Face Recognition Algorithm 56
     7.1 Geometric Measures 56
     7.2 The Feature Set of Geometric Measures 57
     7.3 Recognition 61
     7.4 Experimental Results and Discussion 63
     CHAPTER 8 Conclusions 68
     References 70
-
dc.description.tableofcontents TABLE OF CONTENTS
     CHAPTER 1 Introduction 7
     CHAPTER 2 Related Work 6
     CHAPTER 3 Homomorphic Preprocessing 11
     3. 1 Characteristics of NIR images 12
     3.1.1 NIR Image Formation 12
     3.1.2 NIR Image Characteristics 12
     3.1.3 Gaussian Illumination Model 13
     3.2 Homomorphic Filtering Techniques 15
     3.2.1 Separating the Illumination Component 15
     3.2.2 Homomorphic Filtering 17
     3.2.3 NIR Image Correction Results 18
     3.2.4 Color Image Correction Results (RGB, HSV Comparison) 22
     CHAPTER 4 NIR Image Classification 25
     CHAPTER 5 Holistic Face Recognition Algorithms and Evaluation Results 33
     5.1 Holistic Methods 34
     5.2 Feature-Based Methods 35
     5.3 Evaluating Holistic Face Recognition Algorithms 35
     CHAPTER 6 Facial Feature Detection Algorithm 42
     6.1 Feature-Based Facial Feature Detection Algorithm 42
     6.2 Facial Feature Detection Results 54
     CHAPTER 7 Proposed Face Recognition Algorithm 56
     7.1 Geometric Measures 56
     7.2 The Feature Set of Geometric Measures 57
     7.3 Recognition 61
     7.4 Experimental Results and Discussion 63
     CHAPTER 8 Conclusions 68
     References 70
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0090753001en_US
dc.subject (關鍵詞) face recognitionen_US
dc.subject (關鍵詞) illuminaitonen_US
dc.subject (關鍵詞) feature baseden_US
dc.subject (關鍵詞) low illuminationen_US
dc.title (題名) 微弱光源下之人臉辨識zh_TW
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 【1】 W. Zhao, R. Chellappa, A. Rosenfeld, and P. J. Phillips. 2000. Face recognition: A literature survey. Technical Report CAR-TR-948.zh_TW
dc.relation.reference (參考文獻) 【2】 M.-H. Yang, D. Kriegman, and N. Ahuja. 2002. Detecting faces in images: A survey. IEEE Trans. on Pattern Analysis and Machine Intelligence 24:1 34-58.zh_TW
dc.relation.reference (參考文獻) 【3】 C. H. Jones, S. G. Burnay, and T. L. Williams. Applications of Thermal Imaging, Adam Hilger, 1988.zh_TW
dc.relation.reference (參考文獻) 【4】 M. Bichsel. 1998. Analyzing a scene’s picture set under varying lighting. Computer Vision and Image Understanding 71:3 271-280.zh_TW
dc.relation.reference (參考文獻) 【5】 R. C. Gonzalez and R. E. Woods. Digital Image Processing, Prentice Hall, 2002.zh_TW
dc.relation.reference (參考文獻) 【6】 KAYA http://www.kaya-optics.com/products/applications.shtmlzh_TW
dc.relation.reference (參考文獻) 【7】 Y. Moses, Y. Adini, and S. Ullman. 1994. Face recognition: The problem of compensating for changes in illumination direction. European of Conference on Computer Vision 286-296.zh_TW
dc.relation.reference (參考文獻) 【8】 P.N. Belhumeur, J.P. Hespanha and D.J. Kriegman. 1997. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. on Pattern Analysis and Machine Intelligence 19:7 711-720.zh_TW
dc.relation.reference (參考文獻) 【9】 Y. Adini, Y. Moses and S. Ullman. 1997. Face recognition: The problem of compensating for changes in illumination direction. IEEE Trans. on Pattern Analysis and Machine Intelligence 19:7 721-732.zh_TW
dc.relation.reference (參考文獻) 【10】 D.W. Jacobs, P.N. Belhumeur, and R. Basri. 1998. Comparing images under variable illumination. Proc. of IEEE Conference on Computer Vision and Pattern Recognition 610-617.zh_TW
dc.relation.reference (參考文獻) 【11】 P. Hallman. 1994. A low-dimensional representation of human faces for arbitrary lighting conditions. Proc. of IEEE Conference on Computer Vision and Pattern Recognition 995-999.zh_TW
dc.relation.reference (參考文獻) 【12】 W. Zhao. 1999. Robust image based 3D face recognition. PhD Thesis, University of Maryland.zh_TW
dc.relation.reference (參考文獻) 【13】 A. Georghiades P. N. Belhumeur and D. Kriegman. 2001. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. on Pattern Analysis and Machine Intelligence 23:6 643-660.zh_TW
dc.relation.reference (參考文獻) 【14】 W. Zhao and R. Chellappa. 2000. Illumination-insensitive face recognition using symmetric shape-from-shading. Proc. of IEEE Conference on Computer Vision and Pattern Recognition 1286-1293.zh_TW
dc.relation.reference (參考文獻) 【15】 F. J. Prokoski and R. B. Riedel, Infrared identification of faces and body parts, in A. Jain, R. Bolle, and S. Pankanti. (editors), Biometrics - Personal Identification in Networked Society, Kluwer Academic, 1999.zh_TW
dc.relation.reference (參考文獻) 【16】 J. Wilder, P. J. Phillips, C. Jiang, S. Wiener. 1996. Comparison of visible and infra-red imagery for face recognition. Proc. of International Conference on Automatic Face and Gesture Recognition 182-187.zh_TW
dc.relation.reference (參考文獻) 【17】 B. H. Brinkman, A. Manduca, and R. A. Robb. 1998. Optimized homomorphic un-sharp masking for MR grayscale inhomogeneity correction. IEEE Trans. on Medical Imaging 17:2 161-171.zh_TW
dc.relation.reference (參考文獻) 【18】 R. Chellappa, C. Wilson, and S. Sirohey. 1995. Human and machine recognition of faces: A survey. Proc. of the IEEE 83:5 705-740.zh_TW
dc.relation.reference (參考文獻) 【19】 M. A. Turk and A. P. Pentland. 1991. Face recognition using eigenfaces. Proc. of IEEE Conference on Computer Vision and Pattern Recognition 586-591.zh_TW
dc.relation.reference (參考文獻) 【20】 M. D. Levine. Vision in Man and Machine, McGraw-Hill, 1985.zh_TW
dc.relation.reference (參考文獻) 【21】 Mario Livio. The Golden Ratio: The story of phi, the World’s Most Astonishing Number, Broadway Books, 2002.zh_TW
dc.relation.reference (參考文獻) 【22】 G. Rhodes. 1988. Looking at faces: First-order and second-order features as determinants of facial appearance. Perception 17:43-63.zh_TW
dc.relation.reference (參考文獻) 【23】 K.H. Wong, H.M. Law, and P.W.M. Tsang. 1989. A system for recognizing human faces. Proc. of IEEE Conference on Acoustic, Speech, Signal Processing 1638-1642.zh_TW
dc.relation.reference (參考文獻) 【24】 I. Craw, H. Ellis, and J.R. Lishman. 1987. Automatic extraction of face-features. Pattern Recognition Letters 5:183-187.zh_TW
dc.relation.reference (參考文獻) 【25】 T. Sakai, M. Nagao, and T. Kanade. 1972. Computer analysis and classification of photographics of human faces. Proc. of 1st USA–Japan Computer Conference 55-62.zh_TW
dc.relation.reference (參考文獻) 【26】 H. Mannaert and A. Oosterlinck. 1990. Self-organizing system for analysis and identification of human faces. Procs. of Applications of Digital Processing 1349 227-232.zh_TW
dc.relation.reference (參考文獻) 【27】 R. Rao and D. Ballard. 1995. Natural basis functions and topographics memory for face recognition. International Joint Conference on Artificial Intelligence 10-17.zh_TW
dc.relation.reference (參考文獻) 【28】 Y. Tian, T. Kanade and J. Cohn. 2001. Recognizing action units for facial expression analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 23:2 97-115.zh_TW
dc.relation.reference (參考文獻) 【29】 P. Penev, J. Atick. 1996. Local feature analysis: A general statistical theory for object representation. Neural Systems 7:3 477-500.zh_TW
dc.relation.reference (參考文獻) 【30】 Y. Tian, T. Kanade, and J. Cohn. 2000. Dual-state parametric eye tracking. Proc. of IEEE Conference on Automatic Face and Gesture Recognition 110-115.zh_TW
dc.relation.reference (參考文獻) 【31】 I. Craw, D. Tock, and A. Bennett. 1992. Finding face features. Proc. of the First European Conference on Computer Vision 92-96.zh_TW