dc.contributor.advisor | 王太林 | zh_TW |
dc.contributor.advisor | Wang, Tai-Lin | en_US |
dc.contributor.author (Authors) | 張天財 | zh_TW |
dc.contributor.author (Authors) | Chang, Tian-Tsair | en_US |
dc.creator (作者) | 張天財 | zh_TW |
dc.creator (作者) | Chang, Tian-Tsair | en_US |
dc.date (日期) | 1998 | en_US |
dc.date.accessioned | 18-Sep-2009 18:28:12 (UTC+8) | - |
dc.date.available | 18-Sep-2009 18:28:12 (UTC+8) | - |
dc.date.issued (上傳時間) | 18-Sep-2009 18:28:12 (UTC+8) | - |
dc.identifier (Other Identifiers) | B2002001691 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/36393 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學研究所 | zh_TW |
dc.description (描述) | 85751005 | zh_TW |
dc.description (描述) | 87 | zh_TW |
dc.description.abstract (摘要) | 這篇論文使用前人所提出的七種方法LMGS、ITQR、imITQR、CB、HH、TLD和TLS,去造一個賈可比(Jacobi)矩陣。文中我們使用已知的特徵值(eigenvalue)和特徵向量的第一個成份,去運作這些演算法,並列出數值的結果,以比較這六種方法造出來的賈可比矩陣之準確性。 | zh_TW |
dc.description.abstract (摘要) | In this thesis seven methods LMGS、ITQR、imITQR、CB、HH、TLS and TLD developed in the past are applied to construct a Jacobi matrix. We use the known eige-envalues and the first components of eigenvctors of a Jacobi matrix to execute thes-e algorithms and list the numerical results and compare the accuracy of the computed Jacobi matrix. | en_US |
dc.description.tableofcontents | 1.Introduction.........................................................................................1 1.1 Lanczos Process...............................................................................1 1.2 Orthogonal Polynomials..................................................................4 1.3 Lanczos-type Methods.....................................................................6 1.4 DG Method......................................................................................10 1.5 HH Method......................................................................................12 1.6 TQR Methods..................................................................................14 2. Examples and Numerical Results...................................................... 16 2.1 Examples......................................................................................16 2.2 Comparison of the Algorithms ........................................................17 3. Conclusion..........................................................................................20 Bibliography..........................................................................................21 Appendix................................................................................................22 | zh_TW |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#B2002001691 | en_US |
dc.subject (關鍵詞) | 賈可比矩陣 | zh_TW |
dc.subject (關鍵詞) | 蘭可修斯過程 | zh_TW |
dc.subject (關鍵詞) | Jacobi matrix | en_US |
dc.subject (關鍵詞) | Lanczos process | en_US |
dc.title (題名) | 有關賈可比矩陣數值建構上的討論 | zh_TW |
dc.title (題名) | On the Numerical Construction of a Jacobi Matrix | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | [1] G. S. Ammar and Chunyang He, On an inverse eigenvalue problem for unitary Hessenberg matrices, Linear Algebra Appl. 218 (1995), 263-271. | zh_TW |
dc.relation.reference (參考文獻) | [2] G. S. Ammar and W. Gragg and L. Reichel, Constructing a unitary Hessenberg matrix from spectral data, in G. H. Golub and P. Van Dooren, Eds., Numerical. Linear. Algebra, Digital Signal Processing and Parallel Algorithms (Springer, N Y, 1991) 358-396. | zh_TW |
dc.relation.reference (參考文獻) | [3] D. Boley and G. H. Golub, A survey of matrix inverse eigenvalue problems, Inverse Problems 3 (1987), 595-622. | zh_TW |
dc.relation.reference (參考文獻) | [4] C. de Boor and G. H. Golub, The numerically stable reconstruction of a Jacobi matrix from spectral data, Linear Algebra Appl. 21 (1978), 245-260. | zh_TW |
dc.relation.reference (參考文獻) | [5] M. T. Chu, Inverse eigenvalue problems, SIAM. Rev. 40 (1998), 1-39. | zh_TW |
dc.relation.reference (參考文獻) | [6] B. N. Datta, Numerical Linear Algebra and Applications, Brooks/Cole, Pacific Grove, California, 1995. | zh_TW |
dc.relation.reference (參考文獻) | [7] S. Elhay, G. H. Golub, and J. Kautsky, Updating and downdating of orthogonal polynomials with data fitting applications, SIAM J. Matrix Anal. 12 (1991), 327-353. | zh_TW |
dc.relation.reference (參考文獻) | [8] W. Gautschi, Computational aspects of orthogonal polynomials, P.Nevai(ed.), 181-216, 1990 Kluwer Academin Publishers. | zh_TW |
dc.relation.reference (參考文獻) | [9] W. B. Gragg, The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math. 16 (1968), 1-8. | zh_TW |
dc.relation.reference (參考文獻) | [10] L. J. Gray and D. G .Wilson, Construction of a Jacobi matrix from spectral data, Linear Algebra Appl.14 (1976),131-134. | zh_TW |
dc.relation.reference (參考文獻) | [11] H. Hochstadt, On the construction of a Jacobi matrix from spectral data, Linear Algebra Appl. 8 (1974), 435-446. | zh_TW |
dc.relation.reference (參考文獻) | [12] H. Hochstadt, On some inverse problems in matrix theory, Ariciv der Math. 18 (1967), 201-207. | zh_TW |
dc.relation.reference (參考文獻) | [13] T. Y. LI, and Zhonggang Zeng, The Laguerre iteration in solving the symmetric tridiagonal eigenproblem, revisted, SIAM. J. Comput. 15 (1994), 1145-1173. | zh_TW |
dc.relation.reference (參考文獻) | [14] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs, N. J. 1980. | zh_TW |
dc.relation.reference (參考文獻) | [15] L. Reichel, Fast QR decomposition of Vandermonde-like matrices and polynomial least squares approximation, SIAM J. Matrix Anal. Appl. 12 (1991), 552-564. | zh_TW |
dc.relation.reference (參考文獻) | [16] T-L. Wang, Notes on some basic matrix eigenproblem computations, unpublished manuscript. | zh_TW |