dc.contributor.advisor | 姜志銘 | zh_TW |
dc.contributor.advisor | Jiang,Thomsa J. | en_US |
dc.contributor.author (Authors) | 柯力文 | zh_TW |
dc.contributor.author (Authors) | Ko, Li-wen | en_US |
dc.creator (作者) | 柯力文 | zh_TW |
dc.creator (作者) | Ko, Li-wen | en_US |
dc.date (日期) | 2002 | en_US |
dc.date.accessioned | 18-Sep-2009 18:28:34 (UTC+8) | - |
dc.date.available | 18-Sep-2009 18:28:34 (UTC+8) | - |
dc.date.issued (上傳時間) | 18-Sep-2009 18:28:34 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0090751004 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/36397 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學研究所 | zh_TW |
dc.description (描述) | 90751004 | zh_TW |
dc.description (描述) | 91 | zh_TW |
dc.description.abstract (摘要) | 以貝氏方法來處理部分區分(partially-classified)或是失去部分訊息資料的類別抽樣(categorical sampling with censored data),大部分建立在「誠實回答」(truthful reporting)以及「無價值性失去部分訊息」(non-informative censoring)的前提下。Dr.Jiang(1995)取消以上兩個限制,提出quasi-Bayes method來近似這類問題的貝氏解。另外我們也嘗試利用Gelfand and Smith(1990)針對Gibbs sampler所提出的收斂方法來估計。本文重點在比較此兩種方法的估計值準確性,並考慮先驗參數(prior)對估計精準的影響。 | zh_TW |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0090751004 | en_US |
dc.subject (關鍵詞) | quasi-Bayes | en_US |
dc.subject (關鍵詞) | Gibbs | en_US |
dc.subject (關鍵詞) | censored data | en_US |
dc.title (題名) | A comparison between quasi-Bayes method and Gibbs sampler on the problem with censored data | zh_TW |
dc.type (資料類型) | thesis | en |