dc.contributor.advisor | 王太林 | zh_TW |
dc.contributor.advisor | Wang ,Tai-Lin | en_US |
dc.contributor.author (Authors) | 蔡淑芬 | zh_TW |
dc.contributor.author (Authors) | Tsai ,Shu-Fen | en_US |
dc.creator (作者) | 蔡淑芬 | zh_TW |
dc.creator (作者) | Tsai ,Shu-Fen | en_US |
dc.date (日期) | 2003 | en_US |
dc.date.accessioned | 18-Sep-2009 18:28:39 (UTC+8) | - |
dc.date.available | 18-Sep-2009 18:28:39 (UTC+8) | - |
dc.date.issued (上傳時間) | 18-Sep-2009 18:28:39 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0090751008 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/36398 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學研究所 | zh_TW |
dc.description (描述) | 90751008 | zh_TW |
dc.description (描述) | 92 | zh_TW |
dc.description.abstract (摘要) | 在計算矩陣的特徵值(eigenvalues)中,QR演算法是一種常見的技巧. 尤其如果使用適當的移位,將可以較快得到特徵值. 在本文中提出一種新的移位策略, 我們證明這各方法是可行的,而且可適用於任何矩陣. 換句說, 本篇論文主旨即是提出有關新的移位QR演算法的收斂. | zh_TW |
dc.description.abstract (摘要) | The QR algorithm is a popular method for computing all the eigenvalues of a dense matrix. If we use a proper shift, we can accelerate convergence of the iterative process. Hence, we design a new shift strategy which includes an eigenvalue of the trailing principal 3-by-3 submatrix of the tridiagonal matrix. We prove the global convergence of the new strategy. In other words, the purpose of this thesis is to propose a theory of the convergence of a new shifted QR algorithm. | en_US |
dc.description.abstract (摘要) | Abstract i 中文摘要 ii 1 Introduction 1 2 Preliminaries 2 2.1 Notation 2 2.2 The shifted QR algorithm 2 2.3 Shift strategies 4 2.4 The convergence of sequences 5 3 A Residual Estimate 5 4 Convergence of the QR Iteration 8 5 Conclusions and Future Work 11 Reference 12 Appendix 14 | - |
dc.description.tableofcontents | Abstract i 中文摘要 ii 1 Introduction 1 2 Preliminaries 2 2.1 Notation 2 2.2 The shifted QR algorithm 2 2.3 Shift strategies 4 2.4 The convergence of sequences 5 3 A Residual Estimate 5 4 Convergence of the QR Iteration 8 5 Conclusions and Future Work 11 Reference 12 Appendix 14 | zh_TW |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0090751008 | en_US |
dc.subject (關鍵詞) | QR Algorithm | en_US |
dc.subject (關鍵詞) | Tridiagonal | en_US |
dc.title (題名) | 移位QR算則在三對角矩陣上之收斂 | zh_TW |
dc.title (題名) | Convergence of the Shifted QR Algorithm on Tridiagonal Matrices | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | T. K. Dekker and J. F. Traub, The shifted QR algorithm for Hermitian matrices, Linear Algebra Appl., 4 (1971), pp. 137-154. | zh_TW |
dc.relation.reference (參考文獻) | James Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997. | zh_TW |
dc.relation.reference (參考文獻) | K. Gates and W. B. Gragg, Notes on TQR algorithms, J. Comput. Appl. Math., 86 (1997), pp. 195-203. | zh_TW |
dc.relation.reference (參考文獻) | G. H. Golub and C. F. Van Loan, Matrix Computations}, 3rd ed., The Johns Hopkins University Press, Baltimore, MD, 1996. | zh_TW |
dc.relation.reference (參考文獻) | W. Hoffmann, B.N. Parlett, A new proof of global convergence for | zh_TW |
dc.relation.reference (參考文獻) | the tridiagonal QL algorithm}, SIAM J. Numer. Anal., 15 (1978), pp. 929-937. | zh_TW |
dc.relation.reference (參考文獻) | E. Jiang and Z. Zhang, A new shift of the QL algorithm for irreducible symmetric tridiagonal matrices}, Linear Algebra Appl., 65 (1985), pp. 261-272. | zh_TW |
dc.relation.reference (參考文獻) | B. N. Parlett, The Symmetric Eigenvalue Problem, revised ed., SIAM, Philadelphia, PA, 1998. | zh_TW |
dc.relation.reference (參考文獻) | Y. Saad, Shifts of origin for the QR algorithm, Proceedings IFIP | zh_TW |
dc.relation.reference (參考文獻) | Congress, Toronto, 1974. | zh_TW |
dc.relation.reference (參考文獻) | G. Thomas and R. Finney, Calculus and Analytic Geometry, 9th ed., Addison-Wesley publishing company, 1996. | zh_TW |
dc.relation.reference (參考文獻) | T.-L. Wang, Convergence of the tridiagonal QR algorithm, Linear Algebra Appl., 322 (2001), pp. 1-17. | zh_TW |
dc.relation.reference (參考文獻) | J. H. Wilkinson, Global convergence of tridiagonal QR algorithm | zh_TW |
dc.relation.reference (參考文獻) | with origin shifts, Linear Algebra Appl., 1 (1968), pp. 409-420. | zh_TW |