dc.contributor.advisor | 張宜武 | zh_TW |
dc.contributor.advisor | Chang, Yi-Wu | en_US |
dc.contributor.author (Authors) | 莊佳芬 | zh_TW |
dc.contributor.author (Authors) | Jhuang, Jia-Fen | en_US |
dc.creator (作者) | 莊佳芬 | zh_TW |
dc.creator (作者) | Jhuang, Jia-Fen | en_US |
dc.date (日期) | 2004 | en_US |
dc.date.accessioned | 18-Sep-2009 18:29:06 (UTC+8) | - |
dc.date.available | 18-Sep-2009 18:29:06 (UTC+8) | - |
dc.date.issued (上傳時間) | 18-Sep-2009 18:29:06 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0917510131 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/36402 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學研究所 | zh_TW |
dc.description (描述) | 91751013 | zh_TW |
dc.description (描述) | 93 | zh_TW |
dc.description.abstract (摘要) | 本文藉構造bipartite graph 的形式討論超圖與對偶超圖的transversal number,進而探討最小著色數的上界,以及證明出此兩圖的最小著色數可差異很大,也可用此方法構造出想要的最小著色數之差異。最後探討在某些情形下,超圖與其對偶超圖的同構性,再則整理出其必要條件。 | zh_TW |
dc.description.abstract (摘要) | H=(X,D) is called a hypergraph, where X is the vertex set and D is a family of subsets of X, denoted as D-edges, and we assume that every D-edges have at least two elements. A strict t-coloring is a onto mapping from X to {1,2,....,t} such that each D contained in D-edge set has two vertices having distinct values. The maximum(minimum) number of colors over all strict k-coloring is called the upper(lower) chromatic number and is denoted as . | en_US |
dc.description.abstract (摘要) | Abstract.......................................................i 1.Introduction.................................................1 2.The difference between the transversal numbers of H and H*...4 3.Isomorphism.................................................12 4.Conclusions.................................................16 References....................................................17 | - |
dc.description.tableofcontents | Abstract.......................................................i 1.Introduction.................................................1 2.The difference between the transversal numbers of H and H*...4 3.Isomorphism.................................................12 4.Conclusions.................................................16 References....................................................17 | zh_TW |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0917510131 | en_US |
dc.subject (關鍵詞) | 對偶超圖 | zh_TW |
dc.subject (關鍵詞) | 同構 | zh_TW |
dc.subject (關鍵詞) | Dual hypergraph | en_US |
dc.subject (關鍵詞) | Transversal number | en_US |
dc.subject (關鍵詞) | Isomorphism | en_US |
dc.title (題名) | 對偶超圖之著色數探討 | zh_TW |
dc.title (題名) | The Chromatic Number of A Dual Hypergraph | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | [1] Claude Berge. (1973). ""Graphs and hypergraphs"" North-Holland | zh_TW |
dc.relation.reference (參考文獻) | [2] Claude Berge. (1989). ""Hypergraphs"" North-Holland | zh_TW |
dc.relation.reference (參考文獻) | [3] Voloshin, V.~I. (1995). ""On the upper chromatic number of a hypergraph`` Australasian Journal of Combinatorics, 25--45. | zh_TW |
dc.relation.reference (參考文獻) | [4] Voloshin, V. I. (2002). ""Coloring mixed hypergraphs: theorey, algorithms and | zh_TW |
dc.relation.reference (參考文獻) | applications`` American Mathematical Society | zh_TW |
dc.relation.reference (參考文獻) | [5] Bulgaru, M., and Voloshin, V.~I. (1997). ""Mixed interval hypergraphs`` Discrete Applied Mathematics, 77,29--41. | zh_TW |
dc.relation.reference (參考文獻) | [6] Jiang, T., Mubayi, D., Tuza, Z., Voloshin, V., and West, D.~B.(2003). ""The chromatic spectrum of mixed hypergraphs,``Graphs and Combinatorics, 309--318. | zh_TW |
dc.relation.reference (參考文獻) | [7] Kr\\`{a}l`, D., Kratochv\\`{i}l, J., and Voss, H.~J. (2004). ""Mixed hypercacti,`` Discrete Math., 286, 99--113. | zh_TW |
dc.relation.reference (參考文獻) | [8] Gionfriddo, M., Milazzo, L., and Voloshin, V. (2002). ""On the upper chromatic index of a multigraph,`` Comput. Sci.J.Moldova,81--91 | zh_TW |