Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 模糊時間數列轉折區間的認定
Application of Fuzzy Time Series Analysis To Change Periods Detection
作者 莊閔傑
貢獻者 吳柏林
莊閔傑
關鍵詞 轉折區間
模糊轉折區間
模糊時間數列
景氣循環
Structure change
Fuzzy time series
Fuzzy change period
FCM measures of fuzziness
Business cycle
日期 1998
上傳時間 18-Sep-2009 19:08:29 (UTC+8)
摘要 由於許多經濟指標的定義不明確,或是因為資料蒐集的時間不一,導致代表經濟景氣的數值,實際上即具有相當大的的不確定性。傳統的方法多不考慮這樣的模糊性,而傾向尋找一準確的模式轉折點。本文則以模糊數學的方法,運用模糊分類法以及模糊熵,訂定一個評判的準則。藉以找出一時間數列模式發生變化的轉折區間。最後以台灣經濟景氣指標為例,說明此方法可不需對資料的模式有任何事先的認知,即可得出與傳統方法相近,甚至更為合理的預測結果。
Unlike conventional change points detecting, which seeks to find a decision boundary between classes for certain structural changed time series, the purpose of this research is to investigate a new approach about fuzzy change period identification. Based on the concept of fuzzy theory, we propose a procedure for the - level of fuzzy change period detecting and prove some useful properties for a fuzzy time series. We use some numerical examples to demonstrate how these procedures can be applied. Finally, experimental results show that the proposed detecting approach for structure change of fuzzy time series is available and practical in identifying the alpha-level of fuzzy change period.
參考文獻 Balke, N. S. (1993). Detecting level shifts in time series. Journal of Business and Economic Statistics, 11(1), 81-92.
Barry, D. and J. A. Hartigan (1993). A bayesian analysis for change point problems. Journal of the American Statistical Association, 88(421), 309-319.
Bleaney, M. (1990). Some comparisions of the relative power of simple tests for structure change in regression models. Journal of Forecasting, 9, 437-444.
Broemeling, L. D. and H. Tsurumi (1987). Econometrics and structural change. Marcel Dekker Inc.
Chow, G. C. (1960), Testing for equality between sets of coefficients in two linear regressions. Econometrica, 28, pp. 591-605.
Custem, B. V. and I. Gath (1993). Detection of outliers and robust estimation using fuzzy clustering. Computational Statistics and Data Analysis, 15, 47-61.
Hathaway, R. J. and J. C. Bezdek (1993). Switching regression models and fuzzy clustering. IEEE Transactions on fuzzy systems, 1(3), 195-204.
Heshmaty, B. A. Kandel (1985). Fuzzy linear regression and its applications to forecasting in uncertain environment. Fuzzy Sets and System, 15, 159-191.
Klir, G. J. and T. A. Folger, (1988). Fuzzy Sets, Uncertainty, and Information. Englewood Cliffs, NJ:Prentice Hall.
Lin, C. F. and T. Ter svirta (1994), Testing the constancy of regression parameters against continuous structural change. Journal of Econometrics, 62, 211-228.
Nyblom, J. (1989). Testing for the Constance of Parameters over Time. Journal of the American Statistical Association, 84, 223-230.
Oh, S. B., Kim, W. and Lee J. K. (1990). An approach to causal modeling in fuzzy environment and its application. Fuzzy Sets and System, 35, 43-55.
Ploberger, W., W. Kramer, and K. Kontrus (1989), A new test for structural stability in the linear regression model. Journal of Econometrics, 40, 307-318.
Song, Q. and B. S. Chissom (1993a). Fuzzy Time Series and its Models, Fuzzy Sets and Systems, 54, 267-277.
Song, Q. and B. S. Chissom (1993b). Forecasting Enrollments With Fuzzy Time Series-Part I, Fuzzy Sets and Systems, 54, 1-9.
Tsay, R. S. (1988). Outliers, level shifts, and variance changes in time series. Journal of forecasting, 7, 1-20.
Wu, B. (1994). On fuzzy identification of nonlinear time series. Technique Reports.
Yoshinari, Y., W. Pedrycz, and K. Hirota (1993). Construction of fuzzy models through clustering techniques. Fuzzy Sets and Systems, 54, 157-165.
Zadeh, L. A. (1965), Fuzzy Sets. Information and Control, 8, 338-353.
Zimmermann, H. J. (1991), Fuzzy Set Theory and Its Applications. Boston: Kluwer Academi.
Mu-Song Chen and Shinn-Wei Wang (1999), Fuzzy clustering analysis for optimizing fuzzy membership functions. Fuzzy Set and Systems, 103, 239-254
Tai Wai Cheng, Dmitry B. Goldgof, Lawrence O. Hall (1999), Faster fuzzy Clustering, Fuzzy Set and Systems, 93, 49-56.
A.F. Gomez-Skarmeta, M. Delgado, M.A. Vila (1999), About the use of fuzzy clustering techniques for fuzzy model identification, Fuzzy Set and systems, 106, 179-188.
Toly Chen, Mao-Jiun J. Wang (1999), Forcasting methods using fuzzy concepts, Fuzzy Set and Ssystems, 105, 339-352.
描述 碩士
國立政治大學
統計研究所
84354003
87
資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002001566
資料類型 thesis
dc.contributor.advisor 吳柏林zh_TW
dc.contributor.author (Authors) 莊閔傑zh_TW
dc.creator (作者) 莊閔傑zh_TW
dc.date (日期) 1998en_US
dc.date.accessioned 18-Sep-2009 19:08:29 (UTC+8)-
dc.date.available 18-Sep-2009 19:08:29 (UTC+8)-
dc.date.issued (上傳時間) 18-Sep-2009 19:08:29 (UTC+8)-
dc.identifier (Other Identifiers) B2002001566en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/36656-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計研究所zh_TW
dc.description (描述) 84354003zh_TW
dc.description (描述) 87zh_TW
dc.description.abstract (摘要) 由於許多經濟指標的定義不明確,或是因為資料蒐集的時間不一,導致代表經濟景氣的數值,實際上即具有相當大的的不確定性。傳統的方法多不考慮這樣的模糊性,而傾向尋找一準確的模式轉折點。本文則以模糊數學的方法,運用模糊分類法以及模糊熵,訂定一個評判的準則。藉以找出一時間數列模式發生變化的轉折區間。最後以台灣經濟景氣指標為例,說明此方法可不需對資料的模式有任何事先的認知,即可得出與傳統方法相近,甚至更為合理的預測結果。zh_TW
dc.description.abstract (摘要) Unlike conventional change points detecting, which seeks to find a decision boundary between classes for certain structural changed time series, the purpose of this research is to investigate a new approach about fuzzy change period identification. Based on the concept of fuzzy theory, we propose a procedure for the - level of fuzzy change period detecting and prove some useful properties for a fuzzy time series. We use some numerical examples to demonstrate how these procedures can be applied. Finally, experimental results show that the proposed detecting approach for structure change of fuzzy time series is available and practical in identifying the alpha-level of fuzzy change period.en_US
dc.description.tableofcontents 1. Introduction
2. Detection method using fuzzy statistics
2.1 Concept of fuzzy time series
2.2 Clustering of fuzzy time series
3. Simulations
4. Application to the analysis of Taiwan Business Cycle
5. Conclusion
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002001566en_US
dc.subject (關鍵詞) 轉折區間zh_TW
dc.subject (關鍵詞) 模糊轉折區間zh_TW
dc.subject (關鍵詞) 模糊時間數列zh_TW
dc.subject (關鍵詞) 景氣循環zh_TW
dc.subject (關鍵詞) Structure changeen_US
dc.subject (關鍵詞) Fuzzy time seriesen_US
dc.subject (關鍵詞) Fuzzy change perioden_US
dc.subject (關鍵詞) FCM measures of fuzzinessen_US
dc.subject (關鍵詞) Business cycleen_US
dc.title (題名) 模糊時間數列轉折區間的認定zh_TW
dc.title (題名) Application of Fuzzy Time Series Analysis To Change Periods Detectionen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Balke, N. S. (1993). Detecting level shifts in time series. Journal of Business and Economic Statistics, 11(1), 81-92.zh_TW
dc.relation.reference (參考文獻) Barry, D. and J. A. Hartigan (1993). A bayesian analysis for change point problems. Journal of the American Statistical Association, 88(421), 309-319.zh_TW
dc.relation.reference (參考文獻) Bleaney, M. (1990). Some comparisions of the relative power of simple tests for structure change in regression models. Journal of Forecasting, 9, 437-444.zh_TW
dc.relation.reference (參考文獻) Broemeling, L. D. and H. Tsurumi (1987). Econometrics and structural change. Marcel Dekker Inc.zh_TW
dc.relation.reference (參考文獻) Chow, G. C. (1960), Testing for equality between sets of coefficients in two linear regressions. Econometrica, 28, pp. 591-605.zh_TW
dc.relation.reference (參考文獻) Custem, B. V. and I. Gath (1993). Detection of outliers and robust estimation using fuzzy clustering. Computational Statistics and Data Analysis, 15, 47-61.zh_TW
dc.relation.reference (參考文獻) Hathaway, R. J. and J. C. Bezdek (1993). Switching regression models and fuzzy clustering. IEEE Transactions on fuzzy systems, 1(3), 195-204.zh_TW
dc.relation.reference (參考文獻) Heshmaty, B. A. Kandel (1985). Fuzzy linear regression and its applications to forecasting in uncertain environment. Fuzzy Sets and System, 15, 159-191.zh_TW
dc.relation.reference (參考文獻) Klir, G. J. and T. A. Folger, (1988). Fuzzy Sets, Uncertainty, and Information. Englewood Cliffs, NJ:Prentice Hall.zh_TW
dc.relation.reference (參考文獻) Lin, C. F. and T. Ter svirta (1994), Testing the constancy of regression parameters against continuous structural change. Journal of Econometrics, 62, 211-228.zh_TW
dc.relation.reference (參考文獻) Nyblom, J. (1989). Testing for the Constance of Parameters over Time. Journal of the American Statistical Association, 84, 223-230.zh_TW
dc.relation.reference (參考文獻) Oh, S. B., Kim, W. and Lee J. K. (1990). An approach to causal modeling in fuzzy environment and its application. Fuzzy Sets and System, 35, 43-55.zh_TW
dc.relation.reference (參考文獻) Ploberger, W., W. Kramer, and K. Kontrus (1989), A new test for structural stability in the linear regression model. Journal of Econometrics, 40, 307-318.zh_TW
dc.relation.reference (參考文獻) Song, Q. and B. S. Chissom (1993a). Fuzzy Time Series and its Models, Fuzzy Sets and Systems, 54, 267-277.zh_TW
dc.relation.reference (參考文獻) Song, Q. and B. S. Chissom (1993b). Forecasting Enrollments With Fuzzy Time Series-Part I, Fuzzy Sets and Systems, 54, 1-9.zh_TW
dc.relation.reference (參考文獻) Tsay, R. S. (1988). Outliers, level shifts, and variance changes in time series. Journal of forecasting, 7, 1-20.zh_TW
dc.relation.reference (參考文獻) Wu, B. (1994). On fuzzy identification of nonlinear time series. Technique Reports.zh_TW
dc.relation.reference (參考文獻) Yoshinari, Y., W. Pedrycz, and K. Hirota (1993). Construction of fuzzy models through clustering techniques. Fuzzy Sets and Systems, 54, 157-165.zh_TW
dc.relation.reference (參考文獻) Zadeh, L. A. (1965), Fuzzy Sets. Information and Control, 8, 338-353.zh_TW
dc.relation.reference (參考文獻) Zimmermann, H. J. (1991), Fuzzy Set Theory and Its Applications. Boston: Kluwer Academi.zh_TW
dc.relation.reference (參考文獻) Mu-Song Chen and Shinn-Wei Wang (1999), Fuzzy clustering analysis for optimizing fuzzy membership functions. Fuzzy Set and Systems, 103, 239-254zh_TW
dc.relation.reference (參考文獻) Tai Wai Cheng, Dmitry B. Goldgof, Lawrence O. Hall (1999), Faster fuzzy Clustering, Fuzzy Set and Systems, 93, 49-56.zh_TW
dc.relation.reference (參考文獻) A.F. Gomez-Skarmeta, M. Delgado, M.A. Vila (1999), About the use of fuzzy clustering techniques for fuzzy model identification, Fuzzy Set and systems, 106, 179-188.zh_TW
dc.relation.reference (參考文獻) Toly Chen, Mao-Jiun J. Wang (1999), Forcasting methods using fuzzy concepts, Fuzzy Set and Ssystems, 105, 339-352.zh_TW