Publications-Theses

題名 基於領域詞典之詞彙-語義網路建構方法研究 - 以財務金融領域詞典為例
The Construction of a Lexical-semantic Network Based on Domain Dictionary: Dictionary of Finance and Banking as an Example
作者 曾建勛
Tzeng,Jian Shuin
貢獻者 劉文卿
Liou,Wen Ching
曾建勛
Tzeng,Jian Shuin
關鍵詞 中文斷詞
特徵向量
詞空間
語義網路
語義相似度
Chinese word segmentation
Feature vector
Word space
Semantic network
Semantic similarity
日期 2006
上傳時間 18-Sep-2009 20:13:54 (UTC+8)
摘要 領域詞典包含許多專業的詞彙以及對詞彙的定義,但詞典中詞彙間的關係是被隱藏起來的,本研究運用自然語言處理的相關技術,提出運用領域詞典找出詞彙間關係建構特定領域語義網路的方法。
A domain dictionary contains many professional words and their definitions. In general, there are many hidden relations among words in a dictionary. In this thesis, we use techniques of natural language processing to find out these relations, and bring up a method to construct a domain specific lexical semantic network.
參考文獻 [1] M.R.Quillian; Semantic memory. In; M.Minsky (Ed.) Semantic information processing; MIT Press, Cambridge, 227-270 (1968).
[2] R.F.Simmons, J.Slocum; Generating English Discourse from Semantic Networks, Communications of the ACM; 15(10), 891-905 (1972).
[3] HowNet, URL: http://www.keenage.com/.
[4] WordNet, URL: http://wordnet.princeton.edu/.
[5] Chinese Word Segmentation System of Academia Sinica, URL: http://ckipsvr.iis.sinica.edu.tw/.
[6] J.Allen; Natural Language Understanding 2nd ed.; Benjamin & Cummings, Redwood, 195 (1995).
[7] S.Dominich; A Unified Mathematical Definition of Classical Information Retrieval, Journal of the American Society for Information Science; 51(7), 614-625 (2000).
[8] V.Fromkin, R.Rodman, N.Hyams; An Introduction to Language 7th ed.; Thomson Wadsworth, Boston, 75-77 (2002).
[9] J.I.Saeed; Semantics 2nd ed.; Blackwell Publishing, Malden, 247-248 (2003).
[10] R.R.K.Hartmann, G.James; Dictionary of Lexicography; Foreign Language Teaching and Research Press, Beijing, 110 (2000).
[11] Q.C.Wang, et al.; Dictionary of Finance and Banking; Wunan, Taipei, 1-80 (2001).
[12] C.D.Manning, H.Schütze; Foundations of Statistical Natural Language Processing; MIT Press, Cambridge (1999).
描述 碩士
國立政治大學
資訊管理研究所
94356003
95
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0094356003
資料類型 thesis
dc.contributor.advisor 劉文卿zh_TW
dc.contributor.advisor Liou,Wen Chingen_US
dc.contributor.author (Authors) 曾建勛zh_TW
dc.contributor.author (Authors) Tzeng,Jian Shuinen_US
dc.creator (作者) 曾建勛zh_TW
dc.creator (作者) Tzeng,Jian Shuinen_US
dc.date (日期) 2006en_US
dc.date.accessioned 18-Sep-2009 20:13:54 (UTC+8)-
dc.date.available 18-Sep-2009 20:13:54 (UTC+8)-
dc.date.issued (上傳時間) 18-Sep-2009 20:13:54 (UTC+8)-
dc.identifier (Other Identifiers) G0094356003en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/36941-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊管理研究所zh_TW
dc.description (描述) 94356003zh_TW
dc.description (描述) 95zh_TW
dc.description.abstract (摘要) 領域詞典包含許多專業的詞彙以及對詞彙的定義,但詞典中詞彙間的關係是被隱藏起來的,本研究運用自然語言處理的相關技術,提出運用領域詞典找出詞彙間關係建構特定領域語義網路的方法。zh_TW
dc.description.abstract (摘要) A domain dictionary contains many professional words and their definitions. In general, there are many hidden relations among words in a dictionary. In this thesis, we use techniques of natural language processing to find out these relations, and bring up a method to construct a domain specific lexical semantic network.en_US
dc.description.tableofcontents 致謝 I
Abstract II
摘要 III
Table of Contents IV
List of Figures V
List of Tables VI
Chapter 1 Introduction 1
1.1. Research Background 1
1.2. Research Motivation 1
1.3. Research Objectives 2
1.4. Thesis Organization 2
Chapter 2 Literature Review 3
2.1. Semantic Network 3
2.2. Chinese Word Segmentation 3
2.3. TFIDF (Term Frequency–Inverse Document Frequency) 4
2.4. The Structure of Meaning 4
Chapter 3 Research Method 6
3.1. Definition 6
3.2. Construction Process 8
3.3. Data Preparation 9
3.4. Word Base Construction 9
3.5. Semantic Similarity Calculation 10
3.6. Relation Identifier Retrieval 11
3.7. Verification 15
Chapter 4 Result 16
Chapter 5 Conclusion 19
References 20
Appendix A. Terms in Dictionary 21
Appendix B Relations among terms 28
B.1 Relations Ordered by Semantic Similarity 28
B.2 Relations Ordered by English Term Name 45
Appendix C Example of Relation Identifiers Retrieved by Different Methods 64
C.1 Relation Identifier “是一種” Retrieved by Morphemes 64
C.2 Relation Identifier “等同於” Retrieved by Syntax Patterns 68
C.3 Relation Identifier “是一種” Retrieved by Syntax Patterns 70
Appendix D Lexical Semantic Networks 74
zh_TW
dc.format.extent 50633 bytes-
dc.format.extent 104041 bytes-
dc.format.extent 103995 bytes-
dc.format.extent 134272 bytes-
dc.format.extent 161643 bytes-
dc.format.extent 200821 bytes-
dc.format.extent 487098 bytes-
dc.format.extent 196897 bytes-
dc.format.extent 15471 bytes-
dc.format.extent 28270 bytes-
dc.format.extent 1119232 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0094356003en_US
dc.subject (關鍵詞) 中文斷詞zh_TW
dc.subject (關鍵詞) 特徵向量zh_TW
dc.subject (關鍵詞) 詞空間zh_TW
dc.subject (關鍵詞) 語義網路zh_TW
dc.subject (關鍵詞) 語義相似度zh_TW
dc.subject (關鍵詞) Chinese word segmentationen_US
dc.subject (關鍵詞) Feature vectoren_US
dc.subject (關鍵詞) Word spaceen_US
dc.subject (關鍵詞) Semantic networken_US
dc.subject (關鍵詞) Semantic similarityen_US
dc.title (題名) 基於領域詞典之詞彙-語義網路建構方法研究 - 以財務金融領域詞典為例zh_TW
dc.title (題名) The Construction of a Lexical-semantic Network Based on Domain Dictionary: Dictionary of Finance and Banking as an Exampleen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] M.R.Quillian; Semantic memory. In; M.Minsky (Ed.) Semantic information processing; MIT Press, Cambridge, 227-270 (1968).zh_TW
dc.relation.reference (參考文獻) [2] R.F.Simmons, J.Slocum; Generating English Discourse from Semantic Networks, Communications of the ACM; 15(10), 891-905 (1972).zh_TW
dc.relation.reference (參考文獻) [3] HowNet, URL: http://www.keenage.com/.zh_TW
dc.relation.reference (參考文獻) [4] WordNet, URL: http://wordnet.princeton.edu/.zh_TW
dc.relation.reference (參考文獻) [5] Chinese Word Segmentation System of Academia Sinica, URL: http://ckipsvr.iis.sinica.edu.tw/.zh_TW
dc.relation.reference (參考文獻) [6] J.Allen; Natural Language Understanding 2nd ed.; Benjamin & Cummings, Redwood, 195 (1995).zh_TW
dc.relation.reference (參考文獻) [7] S.Dominich; A Unified Mathematical Definition of Classical Information Retrieval, Journal of the American Society for Information Science; 51(7), 614-625 (2000).zh_TW
dc.relation.reference (參考文獻) [8] V.Fromkin, R.Rodman, N.Hyams; An Introduction to Language 7th ed.; Thomson Wadsworth, Boston, 75-77 (2002).zh_TW
dc.relation.reference (參考文獻) [9] J.I.Saeed; Semantics 2nd ed.; Blackwell Publishing, Malden, 247-248 (2003).zh_TW
dc.relation.reference (參考文獻) [10] R.R.K.Hartmann, G.James; Dictionary of Lexicography; Foreign Language Teaching and Research Press, Beijing, 110 (2000).zh_TW
dc.relation.reference (參考文獻) [11] Q.C.Wang, et al.; Dictionary of Finance and Banking; Wunan, Taipei, 1-80 (2001).zh_TW
dc.relation.reference (參考文獻) [12] C.D.Manning, H.Schütze; Foundations of Statistical Natural Language Processing; MIT Press, Cambridge (1999).zh_TW