dc.contributor.advisor | 吳柏林 | zh_TW |
dc.contributor.author (Authors) | 呂冠宏 | zh_TW |
dc.creator (作者) | 呂冠宏 | zh_TW |
dc.date (日期) | 2007 | en_US |
dc.date.accessioned | 19-Sep-2009 12:07:20 (UTC+8) | - |
dc.date.available | 19-Sep-2009 12:07:20 (UTC+8) | - |
dc.date.issued (上傳時間) | 19-Sep-2009 12:07:20 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0093751009 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/37087 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學研究所 | zh_TW |
dc.description (描述) | 93751009 | zh_TW |
dc.description (描述) | 96 | zh_TW |
dc.description.abstract (摘要) | 股票是許多人採取投資的項目。若能準確預測股價的漲跌,則可以有效地降低投資風險,賺取利潤。然而,有許多因素會影響股票走勢,例如政治因素,匯率變化,天災人禍。因此,股票走勢很難被精確預測。我們嘗試用模糊統計來解決股價預測的問題。本論文藉由模糊相關矩陣來建立多變量模糊時間數列,以便用來預測股票趨勢。實證研究則以台灣加權股價指數為對象,對每日的收盤價進行模糊時間數列分析與預測,還計算誤差與準確率。實證研究顯示,能降低投資者的風險。 | zh_TW |
dc.description.tableofcontents | 1. 前言 12. 模糊時間數列模式建構 42.1 模糊邏輯 42.2 模式建立 52.3 FAR(1)模式建構 92.4 FAR(P)模式建構 132.5 VFAR(1,2)模式建構 143. 實証分析 - 點估計 163.1 資料分析 163.2 計算模糊矩陣 173.3 FAR(1)模式預測結果 193.4 FAR(2)模式預測結果 253.5 VFAR(1,2)模式預測結果 284. 實證分析 - 區間估計 335. 結論 37附錄1 39附錄2 40參考文獻 42 | zh_TW |
dc.format.extent | 67307 bytes | - |
dc.format.extent | 84958 bytes | - |
dc.format.extent | 48213 bytes | - |
dc.format.extent | 158909 bytes | - |
dc.format.extent | 381120 bytes | - |
dc.format.extent | 288959 bytes | - |
dc.format.extent | 132192 bytes | - |
dc.format.extent | 137716 bytes | - |
dc.format.extent | 50458 bytes | - |
dc.format.extent | 58592 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0093751009 | en_US |
dc.subject (關鍵詞) | 模糊時間數列 | zh_TW |
dc.subject (關鍵詞) | 模糊關係矩陣 | zh_TW |
dc.subject (關鍵詞) | 預測 | zh_TW |
dc.title (題名) | 多變量模糊時間數列在財務上的應用 | zh_TW |
dc.title (題名) | An Application of Multivariate Fuzzy Time Series on Financial Markets. | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | 中文部份 | zh_TW |
dc.relation.reference (參考文獻) | [1] 吳柏林;林玉鈞, (2002), "模糊時間數列分析與預測:以台灣地區加權股價指數 | zh_TW |
dc.relation.reference (參考文獻) | 為例," 中國統計學報, Vol.25, No.1, pp.67-76. | zh_TW |
dc.relation.reference (參考文獻) | [2] 吳柏林 (2005), 模糊統計導論, 方法與應用. 台北:五南書局 | zh_TW |
dc.relation.reference (參考文獻) | [3] 吳柏林 (1995), 時間序列分析導論. 台北:華泰書局 | zh_TW |
dc.relation.reference (參考文獻) | [4] 陳蒼山 (2006),模糊時間數列分析與預測—以石油價格為例(碩士論文) | zh_TW |
dc.relation.reference (參考文獻) | 英文部分 | zh_TW |
dc.relation.reference (參考文獻) | [5] Dug Hun Hong (2005), A note on fuzzy time-series model. Fuzzy Sets and Systems, 155, 309-316. | zh_TW |
dc.relation.reference (參考文獻) | [6] Diebold F. X. and Lindner P. (1996), Fractional integration and interval prediction. Economics Letters, 50, 305-313. | zh_TW |
dc.relation.reference (參考文獻) | [7] Li, H., Miao, Z., Han, S. and Wang, J. (2005), A new kind of fuzzy relation equations based on inner transformation. Computers and Mathematics with Applications, 50, 623-636. | zh_TW |
dc.relation.reference (參考文獻) | [8] Huarng, K. (2001), Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy Sets and Systems, 123, 387-394. | zh_TW |
dc.relation.reference (參考文獻) | [9] Huarng, K. (2001), Heuristic models of fuzzy time series for forecasting. Fuzzy Sets and Systems, 123, 369-386. | zh_TW |
dc.relation.reference (參考文獻) | [10] Huarng, K. and Yu T. H. (2006), The application of neural networks to forecast fuzzy time series. Physica A, 363, 481-491. | zh_TW |
dc.relation.reference (參考文獻) | [11] Koutroumanidis T., Iliadis L. and Sylaios G. K. (2006), Time-series modeling of fishery landings using ARIMA models and fuzzy expected intervals software. Environmental Modeling & Software, 21, 1711-1721. | zh_TW |
dc.relation.reference (參考文獻) | [12] Ramsés H. Mena and Sephen G. Walker (2005), Stationary autoregressive models via a Bayesian nonparametric approach. Journal of Time Series Analysis, 26, 789-805. | zh_TW |
dc.relation.reference (參考文獻) | [13] Rob J. H, Anne B.K, J. Keith Ord and Ralph D. S (2005), Prediction intervals for exponential smoothing using two new classes of state space models. Journal of Forecasting, 24, 17-37. | zh_TW |
dc.relation.reference (參考文獻) | [14] Song, Q. and Chissom, B.S. (1993a), Forecasting enrollments with fuzzy time | zh_TW |
dc.relation.reference (參考文獻) | series – part I. Fuzzy Sets and Systems, 54, 1-9. | zh_TW |
dc.relation.reference (參考文獻) | [15] Song, Q. and Chissom, B.S. (1993b), Fuzzy time series and its models. Fuzzy Sets and Systems, 54, 269-277. | zh_TW |
dc.relation.reference (參考文獻) | [16] Song, Q. and Chissom, B.S. (1994), Forecasting enrollments with fuzzy time | zh_TW |
dc.relation.reference (參考文獻) | series – part II. Fuzzy Sets and Systems, 62, 1-8. | zh_TW |
dc.relation.reference (參考文獻) | [17] Song, Q., Leland, R. P. and Chissom, B. S. (1995), A new fuzzy time-series model of fuzzy number observations. Fuzzy Sets and Systems, 73, 341-348. | zh_TW |
dc.relation.reference (參考文獻) | [18] Song, Q., Leland, R. P. and Chissom, B. S. (1997), Fuzzy stochastic fuzzy time | zh_TW |
dc.relation.reference (參考文獻) | series and its models. Fuzzy Sets and Systems, 62, 1-8. | zh_TW |
dc.relation.reference (參考文獻) | [19] Chen, S. (1996), Forecasting enrollments based on fuzzy time series. Fuzzy Sets and Systems, 81, 311-319. | zh_TW |
dc.relation.reference (參考文獻) | [20] Wu, B. and Chen, M. (1999), Use of fuzzy statistical technique in change periods detection of nonlinear time series. Applied Mathematics and Computation, 99, 241-254. | zh_TW |
dc.relation.reference (參考文獻) | [21] Zimmermann, H.J. (1991), Fuzzy Set Theory and Its Applications. Boston:Kluwer Academi. | zh_TW |