Publications-Theses

題名 利用GPS觀測量構建台灣南部地區網格式電離層模型
A Study on Grid-Based Ionosphere Modeling of Southern Taiwan Region Using GPS Measurements
作者 吳相忠
Wu,Shiang Chung
貢獻者 林老生
Lin,Lao Sheng
吳相忠
Wu,Shiang Chung
關鍵詞 電離層延遲
全電子含量
L1/L2差分延遲
相位水準演算法
薄殼模型
電離層穿透點
網格式演算法
Ionospheric Delay
Total Electron Content
L1/L2 differential delay
Phase Leveling Algorithm
Thin-Shell Model
Ionospheric Pierce Point
Grid-Based Algorithm
日期 2003
上傳時間 19-Sep-2009 13:12:08 (UTC+8)
摘要 電離層延遲為精密GPS定位及導航的主要誤差來源之一,為了減弱電離層延遲對GPS定位及導航的影響,可以利用雙頻GPS觀測量構建即時的區域電離層模型,以提供即時的電離層延遲誤差改正參數,修正因電離層延遲效應造成的定位及導航誤差。
本研究以台灣地區雙頻GPS觀測量,採用相位水準技術估算全電子含量(TEC)、修正的單站演算法估計各GPS衛星及接收儀之L1/L2差分延遲及以UNSW網格式演算法構建區域的電離層模型。並進而求得適合台灣南部地區網格式電離層模型之較佳網格大小及探討使用那些內政部衛星追蹤站的觀測資料,便可有效建立台灣地區的電離層模型。
The ionospheric delay is one of the main sources of error in precise GPS positioning and navigation. The magnitude of the ionospheric delay is related to the Total Electron Content (TEC) along the radio wave path from a GPS satellite to the ground receiver. The TEC is a function of many variables, including long and short term changes in solar ionising flux, magnetic activity, season of the year, time of day, user location and viewing direction. A dual-frequency GPS receiver can eliminate (to the first order) the ionospheric delay through a linear combination of L1 and L2 observables. However, the majority of civilians use low-cost single-frequency GPS receivers that cannot use this option. Consequently, it is beneficial to estimate ionospheric delays over the region of interest, in real-time, in support of single-frequency GPS positioning and navigation applications.

In order to improve real-time regional ionosphere modelling performance, a grid-based algorithm is proposed. Data from the southern Taiwan region GPS network were used to test the ionosphere modelling algorithms. From the test results described here, it is shown that the performance of real-time regional ionosphere modelling is improved significantly when the proposed algorithm is used.
參考文獻 中文部分
何慶雄、翁錦堂、楊聿銘、余騰鐸、黃謝文、黃懷德,「廣域增強系統(WAAS)在台灣的初步測試」,第五屆GPS衛星科技研討會,民國九十一年。
李振燾,「構建與評估電離層遲延模式以增益GPS高度之精度」,行政院國家科學委員會專題研究計畫成果報告 No.NSC84_2211_E014_002,民國八十四年。
李振濤、陳春盛,以適應修整法建立區域性GPS電離層遲延模式之研究,「測量工程」第四十一卷第四期,民國八十八年,第47頁-第61頁。
吳相忠、林老生,「估計衛星追蹤站之GPS接收機儀器偏差之研究」,第五屆GPS衛星科技研討會,民國九十一年。
林老生,提高GPS即時估計電離層延遲精度之研究,「測量工程」第四十卷第一期,民國八十七年,第25頁–第46頁。
林老生、Chris Rizos,利用GPS觀測量構建即時的區域電離層模型之研究,「測量工程」第四十一卷第一期,民國八十八年,第5頁–第32頁。
林老生,「估計GPS接收機L1/L2儀器偏差」,第二十一屆測量學術及應用研討會,民國九十一年。
林修國,「用GPS雙頻P電碼及載波相位研究電離層與衛星定位」,碩士論文,國立中央大學太空科學研究所,民國八十一年。
曾清涼、儲慶美,「GPS衛星測量原理與應用」二版,台南:國立成功大學衛星資訊研究中心,民國八十八年。
曾清涼、劉正彥,「電離層全電子含量對全球定位系統精準度的影響」,行政院國家科學委員會專題研究計畫成果報告No. NSC 89-2211-E-006-041,民國八十九年。
黃建華,「運用GPS觀測量構建台灣北部地區電離層遲延效應修正模式」,碩士論文,國立交通大學土木工程學系,民國八十五年。
張東和、曹沖、甄衛民,GPS接收機測量電離層TEC的數據處理方法,「電波科學學報」第十卷第三期,民國八十四年,第84頁-第87頁。
張孟陽、呂保維、宋文淼,單頻GPS導航定位中的電離層延遲改正方法,「電波科學學報」第十二卷第三期,民國八十六年,第254頁-第259頁。
蔡和芳,「全球定位系統觀測電離層全電子含量」,碩士論文,國立中央大學太空科學研究所,民國八十四年。
英文部分
Bishop G.J, Coco D.S., & Coker C., 1991. Variations in ionospheric range error with GPS look direction, Proceedings of ION GPS-91, September 11-13, Albuquerque, New Mexico, pp.1045-1054.
Bishop G.J, Coco D.S., Coker C., Fremouv E.J., Secan J.A., Greenspan R.L. & Eyring D.O. (1992), GPS application to global ionospheric monitoring: requirements for a ground-based system, Proceedings of ION GPS-92, Fifth International Technical Meeting of The Satellite Division of The Institute of Navigation, September 16-18, Albuquerque, New Mexico, pp.339-353.
Coco D. (1991), GPS - Satellites of opportunity for ionospheric monitoring. GPS World, October, pp.47-50.
Coco D.S., Coker C., Dahlke S.R. & Clynch J.R. (1991), Variability of GPS satellite differential group delay biases, IEEE Transaction on Aerospace and Electrical Systems, Vol. 27, No. 6, pp.931-938.
Conker, R.S., El-Arini, M.B., Albertson, T.W., Klobuchar, J.A. & Doherty, P.H. (1995): Development of real-time algorithms to estimate the ionosphere error bounds for WAAS. Proceedings of ION GPS-95, Eighth International Technical Meeting of The Satellite Division of The Institute of Navigation, Palm Springs, California, 12-15 September, 1247-1258.
El-Arini, M.B., Conker, R.S., Albertson, T.W., Reagon, J.K., Klobuchar, J.A. & Doherty, P. H. (1995): Comparison of real-time ionospheric algorithms for a GPS Wide-Area Augmentation System (WAAS). NAVIGATION: Journal of the Institute of Navigation, Vol. 41, No. 4, 393-413.
Federal Aviation Administration (FAA) (1994): Wide Area Augmentation System (WAAS) specification. Attachment B, U.S. Department of Transportation. FAA-E-2892, 9 May.
Feltens J., Dow J.M., Martin-Mur T.J., Martinez C.G. & Bayoona-P’erez M.A. (1996), Verification of ESOC ionosphere modeling and status of IGS intercomparison activity. Presented at the IGS Analysis Center Workshop, Silver Springs, MD, USA, March 19-21, pp.205-219.
Hofmann-Wellenhof, B., Lichtenegger, H. & Collins, J. (1994), Global Positioning System: Theory and Practice, Third Edition, Springer-Verlag Wien, New York, 355pp.
Klobuchar J.A. (1987), Ionospheric time-delay algorithm for single-frequency GPS users, IEEE Transaction on Aerospace and Electronic Systems, Vol. AES-23, No.3, May, pp.321-331.
Klobuchar J.A., Basu S. & Doherty P. (1993), Potential limitations in making absolute ionospheric measurements using dual frequency radio waves from GPS satellites, Proceedings of Ionospheric Effects Symposium, IES-93, May, pp.187-194.
Klobuchar J.A. (1996), Ionospheric effects on GPS. In Global Positioning System: Theory and Applications (Edited by Parkinson & Spilker), Vol. 1, American Institute of Aeronautics and Astronautics, Inc., pp.485-515.
Komjathy A. & Langley R.B. (1996), The effect of shell height on high precision ionospheric modeling using GPS, Presented at the IGS Analysis Center Workshop, Silver Springs, MD, March 19-21, pp.193-203.
Lanyi, G.E. & Roth, T. (1988): A comparison of mapped and measured total ionospheric electron content using Global Positioning System and beacon satellite observations. Radio Science, Vol. 23, No. 4, 483-492.
Lin, L.S. (1998), Real-time estimation of ionospheric delays using GPS measurements, UNISURV S-51, Reports from School of Geomatic Engineering, The University of New South Wales, Sydney, Australia, 218pp.
Mannucci A.J., Wilson B.D. & Edwards C.D. (1993), A new method for monitoring the earth ionospheric total electron content using the GPS global network, Proceedings of ION GPS-93, Sixth International Technical Meeting of The Satellite Division of The Institute of Navigation, September 22-24, Salt Lake City, Utah, pp.1323-1332.
Seeber, G. (1993), Satellite Geodesy. Walter de Gruyter, Berlin, 531pp.
Wanninger, L., 1994. Der Einfluss der Ionosphare auf die Positionierung mit GPS, PhD thesis of University of Hannover, Germany, Nr. 201, 137pp.
Wilson B. & Mannucci A. (1994), Extracting ionospheric measurements from GPS in the presence of Anti-Spoofing, Proceedings of ION GPS-94, Seventh International Technical Meeting of The Satellite Division of The Institute of Navigation, September 20-23, Salt Lake City, Utah, pp.1599-1608.
Yinger, C., Feess, W., Esposti, R, Chasko, A., Wilson, B. & Wheaton, B. (1999), GPS satellite interfrequency biases, ION 55th Annual Meeting, pp. 347-354.
描述 碩士
國立政治大學
地政研究所
89257022
92
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0089257022
資料類型 thesis
dc.contributor.advisor 林老生zh_TW
dc.contributor.advisor Lin,Lao Shengen_US
dc.contributor.author (Authors) 吳相忠zh_TW
dc.contributor.author (Authors) Wu,Shiang Chungen_US
dc.creator (作者) 吳相忠zh_TW
dc.creator (作者) Wu,Shiang Chungen_US
dc.date (日期) 2003en_US
dc.date.accessioned 19-Sep-2009 13:12:08 (UTC+8)-
dc.date.available 19-Sep-2009 13:12:08 (UTC+8)-
dc.date.issued (上傳時間) 19-Sep-2009 13:12:08 (UTC+8)-
dc.identifier (Other Identifiers) G0089257022en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/37333-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 地政研究所zh_TW
dc.description (描述) 89257022zh_TW
dc.description (描述) 92zh_TW
dc.description.abstract (摘要) 電離層延遲為精密GPS定位及導航的主要誤差來源之一,為了減弱電離層延遲對GPS定位及導航的影響,可以利用雙頻GPS觀測量構建即時的區域電離層模型,以提供即時的電離層延遲誤差改正參數,修正因電離層延遲效應造成的定位及導航誤差。
本研究以台灣地區雙頻GPS觀測量,採用相位水準技術估算全電子含量(TEC)、修正的單站演算法估計各GPS衛星及接收儀之L1/L2差分延遲及以UNSW網格式演算法構建區域的電離層模型。並進而求得適合台灣南部地區網格式電離層模型之較佳網格大小及探討使用那些內政部衛星追蹤站的觀測資料,便可有效建立台灣地區的電離層模型。
zh_TW
dc.description.abstract (摘要) The ionospheric delay is one of the main sources of error in precise GPS positioning and navigation. The magnitude of the ionospheric delay is related to the Total Electron Content (TEC) along the radio wave path from a GPS satellite to the ground receiver. The TEC is a function of many variables, including long and short term changes in solar ionising flux, magnetic activity, season of the year, time of day, user location and viewing direction. A dual-frequency GPS receiver can eliminate (to the first order) the ionospheric delay through a linear combination of L1 and L2 observables. However, the majority of civilians use low-cost single-frequency GPS receivers that cannot use this option. Consequently, it is beneficial to estimate ionospheric delays over the region of interest, in real-time, in support of single-frequency GPS positioning and navigation applications.

In order to improve real-time regional ionosphere modelling performance, a grid-based algorithm is proposed. Data from the southern Taiwan region GPS network were used to test the ionosphere modelling algorithms. From the test results described here, it is shown that the performance of real-time regional ionosphere modelling is improved significantly when the proposed algorithm is used.
en_US
dc.description.tableofcontents 誌謝……………………………………………………………i
中文摘要………………………………………………………ii
目錄……………………………………………………………iii
圖目錄…………………………………………………………iv
表目錄…………………………………………………………vi
第壹章 緒論………………………………………………… 1
第一節 研究動機與研究目的……………………………………1
第二節 研究方法與研究流程……………………………………4
第三節 研究範圍與章節架構……………………………………7
第貳章 構建區域電離層模型之理論基礎與文獻回顧……10
第一節 全電子含量(TEC)計算公式及推導…………………10
第二節 估計GPS衛星與接收儀L1/L2差分延遲…………… 18
第三節 網格式演算法的原理………………………………… 23
第四節 文獻回顧……………………………………………… 33
第參章 估計參考站GPS接收儀L1/L2差分延遲…………37
第一節 以修正的單站演算法估計參考站接收儀差分延遲… 37
第二節 實驗結果與討論……………………………………… 44
第肆章 構建網格式區域電離層模型………………………48
第一節UNSW網格式演算法與傳統式網格式演算法之比較… 48
第二節 決定區域電離層模型之網格大小…………………… 54
第三節 探討參考站IPP之地理經緯度範圍及涵蓋率……… 63
第伍章 結論與建議…………………………………………66
參考文獻…………………………………………………… 69


圖目錄
圖1-1電離層的地理分布區域…………………………………………6
圖1-2 研究流程圖………………………………………………………7
圖2-1 全電子含量(TEC)的定義……………………………………11
圖2-2 電離層穿透點(IPP)與中心電離層之幾何關係………………13
圖2-3 以參考站IPP之VTEC構建網格式區域電離層模型的方法…29
圖2-4 計算使用者接收儀之IPP的VTEC值方法……………………32
圖3-1 91年4月11日KDNM追蹤站對PRN 23 GPS衛星
實施 改正前後之垂直角時間系列比較圖……………… 46
圖3-2 91年4月11日KDNM追蹤站對PRN 23 GPS衛星
實施 改正前後之VTEC時間系列比較圖…………………46
圖4-1 91年4月6日~14日,使用者測站為S804,以UNSW和Conv.
求得TEC預估值殘差之標準差及Impro(%)值的比較………50
圖4-2 91年4月6日~14日,使用者測站為R096,以UNSW和Conv.
求得TEC預估值殘差之標準差及Impro(%)值的比較………51
圖4-1 91年4月6日~14日,使用者測站為PH19,以UNSW和Conv.
求得TEC預估值殘差之標準差及Impro(%)值的比較………52
圖4-4 91年4月11日,使用者測站為S804,以UNSW
和Conv.求得TEC預估值殘差分佈圖的比較……………… 53
圖4-5 91年4月11日,使用者測站為R096,以UNSW
和Conv.求得TEC預估值殘差分佈圖的比較……………… 53
圖4-6 91年4月11日,使用者測站為PH19,以UNSW
和Conv.求得TEC預估值殘差分佈圖的比較……………… 54
圖4-7 91年4月6日~14日,使用者測站為S804,
四種網格大小之TEC預估值殘差標準差的比較…………… 56
圖4-8 91年4月6日~14日,使用者測站為S804,四種網格大小
之TEC預估值殘差標準差之平均值與標準差的比較……… 56
圖4-9 91年4月6日~14日,使用者測站為R096,
四種網格大小之TEC預估值殘差標準差的比較…………… 57
圖4-10 91年4月6日~14日,使用者測站為R096,四種網格大小
之TEC預估值殘差標準差之平均值與標準差的比較…… 57
圖4-11 91年4月6日~14日,使用者測站為PH19,
四種網格大小之TEC預估值殘差標準差的比較……………58
圖4-12 91年4月6日~14日,使用者測站為PH19,四種網格大小
之TEC預估值殘差標準差之平均值與標準差的比較…… 58
圖4-13 91年4月11日,使用者測站為S804,
四種網格大小之TEC預估值殘差分佈圖的比較………… 59
圖4-14 91年4月11日,使用者測站為R096,
四種網格大小之TEC預估值殘差分佈圖的比較………… 59
圖4-15 91年4月11日,使用者測站為PH19,
四種網格大小之TEC預估值殘差分佈圖的比較………… 60










表目錄
表3-1 S804、R096、PH19測站資料…………………………………38
表3-2 POSTEC軟體的主要功能……………………………………… 39
表3-3 91年4月11日S804測站觀測到的GPS衛星SPRK ……………… 41
表3-4 JPL估算的GPS衛星差分延遲 ……………………………… 42
表3-5 91年4月11日估算S804測站 之程序…………………………43
表3-6 91年4月5日至14日S804、R096、PH19測站 值……………45
表3-7 91年4月5日至14日內政部GPS衛星追蹤站 值……………45
表4-1 91年4月6日~14日,使用者測站為S804,以UNSW和Conv.求得TEC預估值殘差之平均值和標準差的比較……………50
表4-2 91年4月6日~14日,使用者測站為R096,以UNSW和Conv.求得TEC預估值殘差之平均值和標準差的比較………… 51
表4-3 91年4月6日~14日,使用者測站為PH19,以UNSW和Conv.求得TEC預估值殘差之平均值和標準差的比較………… 52
表4-4 91年4月6日~14日,使用者測站為S804,
四種網格大小之TEC預估值殘差標準差………………… 56
表4-5 91年4月6日~14日,使用者測站為R096,
四種網格大小之TEC預估值殘差標準差………………… 57
表4-6 91年4月6日~14日,使用者測站為PH19,
四種網格大小之TEC預估值殘差標準差………………… 58
表4-7 91年4月6日~14日,四種網格大小
改變之精度增加率的情形……………………………………61
表4-8 四種網格大小改變之檔案大小增加率的情形………………62
表4-9 91年4月5日至14日各參考站之IPP
最大地理經緯度範圍及涵蓋…………………………………64
zh_TW
dc.format.extent 94664 bytes-
dc.format.extent 135873 bytes-
dc.format.extent 110611 bytes-
dc.format.extent 124082 bytes-
dc.format.extent 341252 bytes-
dc.format.extent 952508 bytes-
dc.format.extent 397231 bytes-
dc.format.extent 272261 bytes-
dc.format.extent 139446 bytes-
dc.format.extent 128825 bytes-
dc.format.extent 140674 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0089257022en_US
dc.subject (關鍵詞) 電離層延遲zh_TW
dc.subject (關鍵詞) 全電子含量zh_TW
dc.subject (關鍵詞) L1/L2差分延遲zh_TW
dc.subject (關鍵詞) 相位水準演算法zh_TW
dc.subject (關鍵詞) 薄殼模型zh_TW
dc.subject (關鍵詞) 電離層穿透點zh_TW
dc.subject (關鍵詞) 網格式演算法zh_TW
dc.subject (關鍵詞) Ionospheric Delayen_US
dc.subject (關鍵詞) Total Electron Contenten_US
dc.subject (關鍵詞) L1/L2 differential delayen_US
dc.subject (關鍵詞) Phase Leveling Algorithmen_US
dc.subject (關鍵詞) Thin-Shell Modelen_US
dc.subject (關鍵詞) Ionospheric Pierce Pointen_US
dc.subject (關鍵詞) Grid-Based Algorithmen_US
dc.title (題名) 利用GPS觀測量構建台灣南部地區網格式電離層模型zh_TW
dc.title (題名) A Study on Grid-Based Ionosphere Modeling of Southern Taiwan Region Using GPS Measurementsen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 中文部分zh_TW
dc.relation.reference (參考文獻) 何慶雄、翁錦堂、楊聿銘、余騰鐸、黃謝文、黃懷德,「廣域增強系統(WAAS)在台灣的初步測試」,第五屆GPS衛星科技研討會,民國九十一年。zh_TW
dc.relation.reference (參考文獻) 李振燾,「構建與評估電離層遲延模式以增益GPS高度之精度」,行政院國家科學委員會專題研究計畫成果報告 No.NSC84_2211_E014_002,民國八十四年。zh_TW
dc.relation.reference (參考文獻) 李振濤、陳春盛,以適應修整法建立區域性GPS電離層遲延模式之研究,「測量工程」第四十一卷第四期,民國八十八年,第47頁-第61頁。zh_TW
dc.relation.reference (參考文獻) 吳相忠、林老生,「估計衛星追蹤站之GPS接收機儀器偏差之研究」,第五屆GPS衛星科技研討會,民國九十一年。zh_TW
dc.relation.reference (參考文獻) 林老生,提高GPS即時估計電離層延遲精度之研究,「測量工程」第四十卷第一期,民國八十七年,第25頁–第46頁。zh_TW
dc.relation.reference (參考文獻) 林老生、Chris Rizos,利用GPS觀測量構建即時的區域電離層模型之研究,「測量工程」第四十一卷第一期,民國八十八年,第5頁–第32頁。zh_TW
dc.relation.reference (參考文獻) 林老生,「估計GPS接收機L1/L2儀器偏差」,第二十一屆測量學術及應用研討會,民國九十一年。zh_TW
dc.relation.reference (參考文獻) 林修國,「用GPS雙頻P電碼及載波相位研究電離層與衛星定位」,碩士論文,國立中央大學太空科學研究所,民國八十一年。zh_TW
dc.relation.reference (參考文獻) 曾清涼、儲慶美,「GPS衛星測量原理與應用」二版,台南:國立成功大學衛星資訊研究中心,民國八十八年。zh_TW
dc.relation.reference (參考文獻) 曾清涼、劉正彥,「電離層全電子含量對全球定位系統精準度的影響」,行政院國家科學委員會專題研究計畫成果報告No. NSC 89-2211-E-006-041,民國八十九年。zh_TW
dc.relation.reference (參考文獻) 黃建華,「運用GPS觀測量構建台灣北部地區電離層遲延效應修正模式」,碩士論文,國立交通大學土木工程學系,民國八十五年。zh_TW
dc.relation.reference (參考文獻) 張東和、曹沖、甄衛民,GPS接收機測量電離層TEC的數據處理方法,「電波科學學報」第十卷第三期,民國八十四年,第84頁-第87頁。zh_TW
dc.relation.reference (參考文獻) 張孟陽、呂保維、宋文淼,單頻GPS導航定位中的電離層延遲改正方法,「電波科學學報」第十二卷第三期,民國八十六年,第254頁-第259頁。zh_TW
dc.relation.reference (參考文獻) 蔡和芳,「全球定位系統觀測電離層全電子含量」,碩士論文,國立中央大學太空科學研究所,民國八十四年。zh_TW
dc.relation.reference (參考文獻) 英文部分zh_TW
dc.relation.reference (參考文獻) Bishop G.J, Coco D.S., & Coker C., 1991. Variations in ionospheric range error with GPS look direction, Proceedings of ION GPS-91, September 11-13, Albuquerque, New Mexico, pp.1045-1054.zh_TW
dc.relation.reference (參考文獻) Bishop G.J, Coco D.S., Coker C., Fremouv E.J., Secan J.A., Greenspan R.L. & Eyring D.O. (1992), GPS application to global ionospheric monitoring: requirements for a ground-based system, Proceedings of ION GPS-92, Fifth International Technical Meeting of The Satellite Division of The Institute of Navigation, September 16-18, Albuquerque, New Mexico, pp.339-353.zh_TW
dc.relation.reference (參考文獻) Coco D. (1991), GPS - Satellites of opportunity for ionospheric monitoring. GPS World, October, pp.47-50.zh_TW
dc.relation.reference (參考文獻) Coco D.S., Coker C., Dahlke S.R. & Clynch J.R. (1991), Variability of GPS satellite differential group delay biases, IEEE Transaction on Aerospace and Electrical Systems, Vol. 27, No. 6, pp.931-938.zh_TW
dc.relation.reference (參考文獻) Conker, R.S., El-Arini, M.B., Albertson, T.W., Klobuchar, J.A. & Doherty, P.H. (1995): Development of real-time algorithms to estimate the ionosphere error bounds for WAAS. Proceedings of ION GPS-95, Eighth International Technical Meeting of The Satellite Division of The Institute of Navigation, Palm Springs, California, 12-15 September, 1247-1258.zh_TW
dc.relation.reference (參考文獻) El-Arini, M.B., Conker, R.S., Albertson, T.W., Reagon, J.K., Klobuchar, J.A. & Doherty, P. H. (1995): Comparison of real-time ionospheric algorithms for a GPS Wide-Area Augmentation System (WAAS). NAVIGATION: Journal of the Institute of Navigation, Vol. 41, No. 4, 393-413.zh_TW
dc.relation.reference (參考文獻) Federal Aviation Administration (FAA) (1994): Wide Area Augmentation System (WAAS) specification. Attachment B, U.S. Department of Transportation. FAA-E-2892, 9 May.zh_TW
dc.relation.reference (參考文獻) Feltens J., Dow J.M., Martin-Mur T.J., Martinez C.G. & Bayoona-P’erez M.A. (1996), Verification of ESOC ionosphere modeling and status of IGS intercomparison activity. Presented at the IGS Analysis Center Workshop, Silver Springs, MD, USA, March 19-21, pp.205-219.zh_TW
dc.relation.reference (參考文獻) Hofmann-Wellenhof, B., Lichtenegger, H. & Collins, J. (1994), Global Positioning System: Theory and Practice, Third Edition, Springer-Verlag Wien, New York, 355pp.zh_TW
dc.relation.reference (參考文獻) Klobuchar J.A. (1987), Ionospheric time-delay algorithm for single-frequency GPS users, IEEE Transaction on Aerospace and Electronic Systems, Vol. AES-23, No.3, May, pp.321-331.zh_TW
dc.relation.reference (參考文獻) Klobuchar J.A., Basu S. & Doherty P. (1993), Potential limitations in making absolute ionospheric measurements using dual frequency radio waves from GPS satellites, Proceedings of Ionospheric Effects Symposium, IES-93, May, pp.187-194.zh_TW
dc.relation.reference (參考文獻) Klobuchar J.A. (1996), Ionospheric effects on GPS. In Global Positioning System: Theory and Applications (Edited by Parkinson & Spilker), Vol. 1, American Institute of Aeronautics and Astronautics, Inc., pp.485-515.zh_TW
dc.relation.reference (參考文獻) Komjathy A. & Langley R.B. (1996), The effect of shell height on high precision ionospheric modeling using GPS, Presented at the IGS Analysis Center Workshop, Silver Springs, MD, March 19-21, pp.193-203.zh_TW
dc.relation.reference (參考文獻) Lanyi, G.E. & Roth, T. (1988): A comparison of mapped and measured total ionospheric electron content using Global Positioning System and beacon satellite observations. Radio Science, Vol. 23, No. 4, 483-492.zh_TW
dc.relation.reference (參考文獻) Lin, L.S. (1998), Real-time estimation of ionospheric delays using GPS measurements, UNISURV S-51, Reports from School of Geomatic Engineering, The University of New South Wales, Sydney, Australia, 218pp.zh_TW
dc.relation.reference (參考文獻) Mannucci A.J., Wilson B.D. & Edwards C.D. (1993), A new method for monitoring the earth ionospheric total electron content using the GPS global network, Proceedings of ION GPS-93, Sixth International Technical Meeting of The Satellite Division of The Institute of Navigation, September 22-24, Salt Lake City, Utah, pp.1323-1332.zh_TW
dc.relation.reference (參考文獻) Seeber, G. (1993), Satellite Geodesy. Walter de Gruyter, Berlin, 531pp.zh_TW
dc.relation.reference (參考文獻) Wanninger, L., 1994. Der Einfluss der Ionosphare auf die Positionierung mit GPS, PhD thesis of University of Hannover, Germany, Nr. 201, 137pp.zh_TW
dc.relation.reference (參考文獻) Wilson B. & Mannucci A. (1994), Extracting ionospheric measurements from GPS in the presence of Anti-Spoofing, Proceedings of ION GPS-94, Seventh International Technical Meeting of The Satellite Division of The Institute of Navigation, September 20-23, Salt Lake City, Utah, pp.1599-1608.zh_TW
dc.relation.reference (參考文獻) Yinger, C., Feess, W., Esposti, R, Chasko, A., Wilson, B. & Wheaton, B. (1999), GPS satellite interfrequency biases, ION 55th Annual Meeting, pp. 347-354.zh_TW