Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 使用熱物理中臨界點現象來預測金融危機
Using critical phenomena to predict financial crashes
作者 李嘉文
Lee, Grant
貢獻者 郭維裕
Kuo, Wei Yu
李嘉文
Lee, Grant
關鍵詞 熱物理
臨界點
金融危機
預測
critical point
financial crash
physics
predict
日期 2010
上傳時間 8-Dec-2010 01:52:24 (UTC+8)
摘要 在此篇論文之前, 已經有許多學者指出在金融市場奔盤之前的價格波動與熱物理學中的臨界現象有所類似. 其價格會呈現Power law的形式迅速加速上升, 同時伴隨著log-periodic震盪. 藉由first-order Landau expansion和second-order Landau expansion, 我們使用了50個隨機樣本, 分別從五個不同的指數來驗證其正確性. 結果發現該模型很難運用在高波動的市場, 但是對於中級波動的市場卻有不錯的預測能力, 比方說S&P500與Nikkei 225指數.
Before this paper, many scholars indicated that market price movement before a crash is similar to critical phenomena. It can be described by a power law acceleration of the market price decorated with log-periodic oscillations. By first-order Landau expansion and second-order Landau expansion, we use 50 random samples from each of 5 different indices to test the model. It is hard to adapt Landau expansion to high volatility indices, but fit pretty well for medium volatility indices, such as S&P 500 and Nikkei 225.
參考文獻 1. CSI: credit crunch, in The Economist. 2007.
2. in Wall Street Journal. 2008. p. 1.
3. Johansen, A. and D. Sornette, Stock market crashes are outliers. European Physical Journal B, 1998. 1: p. 141-143.
4. Grabel, I., Predicting Financial Crisis in Developing Economies: Astronomy or Astrology? Eastern Economic Journal, 2003. 29(2): p. 243-258.
5. Berg, A. and C. Pattillo, Predicting currency crises: The indicators approach and an alternative. Journal of International Money and Finance, 1999. 18(4): p. 561-586.
6. Arneodo, A., et al., Comment on "Turbulent cascades in foreign exchange markets". Science & Finance, Capital Fund Management, 1996.
7. Sornette, D., A. Johansen, and J.-P. Bouchaud, Stock market crashes, precursors and replicas. Journal de Physique, 1996. 6(1): p. 167-175.
8. Feigenbaum, J.A. and P.G.O. Freund, Discrete scale invariance in stock markets before crashes. International Journal of Modern Physics, 1996: p. 3737-3745.
9. Feigenbaum, J.A., A Statistical Analysis of Log-Periodic Precursors to Financial Crashes. Quantitative Finance, 2001. 1(3): p. 346-360.
10. Ma, S.-K., Modern Theory of Critical Phenomena. 2000.
11. Johansen, A., O. Ledoit, and D. Sornette, Crashes as Critical Points. International Journal of Theoretical and Applied Finance, 2000. 3(2): p. 219-255.
12. Dubrulle, B., F. Graner, and D. Sornette, Scale invariance and beyond. 1998: Springer.
13. Kittel, C., Introduction to Solid State Physics. 8 ed. 2004: Wiley.
14. Sornette, D. and A. Johansen, Large Financial Crashes. Physica A, 1997. 245(3-4): p. 411-422.
15. Sornette, D. and W.-X. Zhou, The US 2000-2002 Market Descent: How Much Longer and Deeper? Quantitative Finance 2, 2002. 6: p. 468-481.
16. Vandewalle, N., et al., Visualizing the log-periodic pattern before crashes. The European Physical Journal B, 1999. 9(2): p. 355-359.
17. Feigenbaum, J.A. and P.G.O. Freund, Discrete Scale Invariance in Stock Markets Before Crashes. International Journal of Modern Physics B, 1996. 10(27): p. 3737-3745.
18. Gnacinski, P. and D. Makowiec, Another type of log-periodic oscillations on Polish stock market? Physica A, 2004. 344(1-2): p. 322-325.
19. Vandewalle, N., et al., How the financial crash of October 1997 could have been predicted. European Physical Journal B, 1998. 4(2): p. 139-141.
20. Press, W.H., Numerical Recipes in C++: The Art of Scientific Computing. 2 ed. 2002: Cambridge University Press.
21. Amemiya, T., Advanced Econometrics. 1 ed. 1985: Harvard University Press.
22. Sornette, D. and W. Zhou, The US 2000-2002 Market Descent: How Much Longer and Deeper? Quantitative Finance 2, 2002. 6: p. 468-481.
23. Johansen, A. and D. Sornette, Financial "Anti-Bubbles" Log-Periodicity in Gold and Nikkei Collapses. International Journal of Modern Physics C, 1999. 10: p. 563-575.
描述 碩士
國立政治大學
國際經營與貿易研究所
97351031
99
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0097351031
資料類型 thesis
dc.contributor.advisor 郭維裕zh_TW
dc.contributor.advisor Kuo, Wei Yuen_US
dc.contributor.author (Authors) 李嘉文zh_TW
dc.contributor.author (Authors) Lee, Granten_US
dc.creator (作者) 李嘉文zh_TW
dc.creator (作者) Lee, Granten_US
dc.date (日期) 2010en_US
dc.date.accessioned 8-Dec-2010 01:52:24 (UTC+8)-
dc.date.available 8-Dec-2010 01:52:24 (UTC+8)-
dc.date.issued (上傳時間) 8-Dec-2010 01:52:24 (UTC+8)-
dc.identifier (Other Identifiers) G0097351031en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/48888-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 國際經營與貿易研究所zh_TW
dc.description (描述) 97351031zh_TW
dc.description (描述) 99zh_TW
dc.description.abstract (摘要) 在此篇論文之前, 已經有許多學者指出在金融市場奔盤之前的價格波動與熱物理學中的臨界現象有所類似. 其價格會呈現Power law的形式迅速加速上升, 同時伴隨著log-periodic震盪. 藉由first-order Landau expansion和second-order Landau expansion, 我們使用了50個隨機樣本, 分別從五個不同的指數來驗證其正確性. 結果發現該模型很難運用在高波動的市場, 但是對於中級波動的市場卻有不錯的預測能力, 比方說S&P500與Nikkei 225指數.zh_TW
dc.description.abstract (摘要) Before this paper, many scholars indicated that market price movement before a crash is similar to critical phenomena. It can be described by a power law acceleration of the market price decorated with log-periodic oscillations. By first-order Landau expansion and second-order Landau expansion, we use 50 random samples from each of 5 different indices to test the model. It is hard to adapt Landau expansion to high volatility indices, but fit pretty well for medium volatility indices, such as S&P 500 and Nikkei 225.en_US
dc.description.tableofcontents 1 Introduction 5
     2 Model 6
     2.1 Critical Points
     2.2 Price Dynamics
     2.3 Crashes
     2.4 Interaction Networks
     2.5 Generalization
     3 Methodology 11
     3.1 Fitting Price Indices
     3.2 Large Crashes
     3.3 Estimation of Equation (11)
     3.4 Estimation of Equation (12)
     4 Selection Criteria 22
     4.1 Definition of Crashes
     4.2 Lomb-Scargle Power Spectrum Analysis
     4.3 More Details On Model Selection Criteria
     5 Empirical Results 29
     5.1 50 Eight-year Random Intervals
     5.2 50 Two-year Random Intervals
     5.3 Robustness Test
     6 Conclusion 30
     References
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0097351031en_US
dc.subject (關鍵詞) 熱物理zh_TW
dc.subject (關鍵詞) 臨界點zh_TW
dc.subject (關鍵詞) 金融危機zh_TW
dc.subject (關鍵詞) 預測zh_TW
dc.subject (關鍵詞) critical pointen_US
dc.subject (關鍵詞) financial crashen_US
dc.subject (關鍵詞) physicsen_US
dc.subject (關鍵詞) predicten_US
dc.title (題名) 使用熱物理中臨界點現象來預測金融危機zh_TW
dc.title (題名) Using critical phenomena to predict financial crashesen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 1. CSI: credit crunch, in The Economist. 2007.zh_TW
dc.relation.reference (參考文獻) 2. in Wall Street Journal. 2008. p. 1.zh_TW
dc.relation.reference (參考文獻) 3. Johansen, A. and D. Sornette, Stock market crashes are outliers. European Physical Journal B, 1998. 1: p. 141-143.zh_TW
dc.relation.reference (參考文獻) 4. Grabel, I., Predicting Financial Crisis in Developing Economies: Astronomy or Astrology? Eastern Economic Journal, 2003. 29(2): p. 243-258.zh_TW
dc.relation.reference (參考文獻) 5. Berg, A. and C. Pattillo, Predicting currency crises: The indicators approach and an alternative. Journal of International Money and Finance, 1999. 18(4): p. 561-586.zh_TW
dc.relation.reference (參考文獻) 6. Arneodo, A., et al., Comment on "Turbulent cascades in foreign exchange markets". Science & Finance, Capital Fund Management, 1996.zh_TW
dc.relation.reference (參考文獻) 7. Sornette, D., A. Johansen, and J.-P. Bouchaud, Stock market crashes, precursors and replicas. Journal de Physique, 1996. 6(1): p. 167-175.zh_TW
dc.relation.reference (參考文獻) 8. Feigenbaum, J.A. and P.G.O. Freund, Discrete scale invariance in stock markets before crashes. International Journal of Modern Physics, 1996: p. 3737-3745.zh_TW
dc.relation.reference (參考文獻) 9. Feigenbaum, J.A., A Statistical Analysis of Log-Periodic Precursors to Financial Crashes. Quantitative Finance, 2001. 1(3): p. 346-360.zh_TW
dc.relation.reference (參考文獻) 10. Ma, S.-K., Modern Theory of Critical Phenomena. 2000.zh_TW
dc.relation.reference (參考文獻) 11. Johansen, A., O. Ledoit, and D. Sornette, Crashes as Critical Points. International Journal of Theoretical and Applied Finance, 2000. 3(2): p. 219-255.zh_TW
dc.relation.reference (參考文獻) 12. Dubrulle, B., F. Graner, and D. Sornette, Scale invariance and beyond. 1998: Springer.zh_TW
dc.relation.reference (參考文獻) 13. Kittel, C., Introduction to Solid State Physics. 8 ed. 2004: Wiley.zh_TW
dc.relation.reference (參考文獻) 14. Sornette, D. and A. Johansen, Large Financial Crashes. Physica A, 1997. 245(3-4): p. 411-422.zh_TW
dc.relation.reference (參考文獻) 15. Sornette, D. and W.-X. Zhou, The US 2000-2002 Market Descent: How Much Longer and Deeper? Quantitative Finance 2, 2002. 6: p. 468-481.zh_TW
dc.relation.reference (參考文獻) 16. Vandewalle, N., et al., Visualizing the log-periodic pattern before crashes. The European Physical Journal B, 1999. 9(2): p. 355-359.zh_TW
dc.relation.reference (參考文獻) 17. Feigenbaum, J.A. and P.G.O. Freund, Discrete Scale Invariance in Stock Markets Before Crashes. International Journal of Modern Physics B, 1996. 10(27): p. 3737-3745.zh_TW
dc.relation.reference (參考文獻) 18. Gnacinski, P. and D. Makowiec, Another type of log-periodic oscillations on Polish stock market? Physica A, 2004. 344(1-2): p. 322-325.zh_TW
dc.relation.reference (參考文獻) 19. Vandewalle, N., et al., How the financial crash of October 1997 could have been predicted. European Physical Journal B, 1998. 4(2): p. 139-141.zh_TW
dc.relation.reference (參考文獻) 20. Press, W.H., Numerical Recipes in C++: The Art of Scientific Computing. 2 ed. 2002: Cambridge University Press.zh_TW
dc.relation.reference (參考文獻) 21. Amemiya, T., Advanced Econometrics. 1 ed. 1985: Harvard University Press.zh_TW
dc.relation.reference (參考文獻) 22. Sornette, D. and W. Zhou, The US 2000-2002 Market Descent: How Much Longer and Deeper? Quantitative Finance 2, 2002. 6: p. 468-481.zh_TW
dc.relation.reference (參考文獻) 23. Johansen, A. and D. Sornette, Financial "Anti-Bubbles" Log-Periodicity in Gold and Nikkei Collapses. International Journal of Modern Physics C, 1999. 10: p. 563-575.zh_TW