dc.contributor.advisor | 李陽明 | zh_TW |
dc.contributor.advisor | Li,young ming | en_US |
dc.contributor.author (Authors) | 王世勛 | zh_TW |
dc.contributor.author (Authors) | Wang,shyh shiun | en_US |
dc.creator (作者) | 王世勛 | zh_TW |
dc.creator (作者) | Wang,shyh shiun | en_US |
dc.date (日期) | 2009 | en_US |
dc.date.accessioned | 8-Dec-2010 11:44:57 (UTC+8) | - |
dc.date.available | 8-Dec-2010 11:44:57 (UTC+8) | - |
dc.date.issued (上傳時間) | 8-Dec-2010 11:44:57 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0094751004 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/49451 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學研究所 | zh_TW |
dc.description (描述) | 94751004 | zh_TW |
dc.description (描述) | 98 | zh_TW |
dc.description.abstract (摘要) | n個物品之直線排列數與環狀排列數有對應關係,一般而言,具有K-循環節的直線排列之所有情形數若為 ,則 即為所對應的環狀排列數,亦即每K種直線排列對應到同一種環狀排列。本文將直線排列之所有情形依所具有的K-循環節之類別做分割,並導出具有K-循環節之直線排列之所有情形數之計數公式,假設直線排列依 -循環節, -循環節, , -循環節分類依序有 種不同排列情形,則所有的環狀排列數 。 | zh_TW |
dc.description.abstract (摘要) | There exists a correspondence between ordered arrangements and circular permutations. Generally speaking, suppose the number of ordered arrangements with K-recurring periods is S, then the number of circular permutations is , namely we may assigne each K cases of ordered arrangements with K-recurring periods to a case of circular permutations. This article partitions the total cases of ordered arrangements with indistinguishable objects by means of the different catagories of K-recurring periods and derives a formula to calculate the total number of ordered arrangements with K-recurring periods. Suppose the number of ordered arrangements with -recurring periods、 -recurring periods、 、 -recurring periods is respectively, then the total number of circular permutations is . | en_US |
dc.description.tableofcontents | 第一章 緒論..............................................1第二章 直線排列之K-循環...................................2第三章 直線排列可能之循環節個數.............................3第四章 直線排列循環節之循環排列與環狀排列之對應................5第五章 直線排列的循環節之子循環節之個數.......................7第六章 具有K-循環節之直線排列計數...........................10第七章 不盡相異物之環狀排列..............................13第八章 結論..............................................17參考文獻..................................................18 | zh_TW |
dc.format.extent | 242341 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0094751004 | en_US |
dc.subject (關鍵詞) | 環狀排列 | zh_TW |
dc.subject (關鍵詞) | 不盡相異物 | zh_TW |
dc.subject (關鍵詞) | circular permutation | en_US |
dc.subject (關鍵詞) | nondistinct objects | en_US |
dc.subject (關鍵詞) | indistinguishable objects | en_US |
dc.title (題名) | 不盡相異物的環狀排列公式 | zh_TW |
dc.title (題名) | A Formula on Circular Permutation of Nondistinct Objects | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | [1]陳壽愷,民國63年(1974),論環狀排列與珠狀排列,科教圖書 | zh_TW |
dc.relation.reference (參考文獻) | [2]陳明哲,民國48年(1959),排列組合,中央書局 | zh_TW |
dc.relation.reference (參考文獻) | [3]王昌銳,民國61年(1972) ,組合論,百成書局 | zh_TW |
dc.relation.reference (參考文獻) | [4]王奉民、陳定凱,民國77年(1988),離散數學導論,儒林書局 | zh_TW |
dc.relation.reference (參考文獻) | [5]李雲、林文達,民國86年(1997) ,離散數學 ,儒林書局 | zh_TW |
dc.relation.reference (參考文獻) | [6]張子浩,民國77年(1988) ,整合離散數學,文笙書局 | zh_TW |
dc.relation.reference (參考文獻) | [7]許振忠,民國86年(1997) ,一些排列組合的演算法,政大應數所 | zh_TW |
dc.relation.reference (參考文獻) | 碩士論文 | zh_TW |