學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 利用可變速率方法賦予網路電話壅塞控制能力
Congestion Control Enabled VoIP by Flexible Bit-rate
作者 丁諭祺
Ting, Yu Chi
貢獻者 連耀南
Lien, Yao Nan
丁諭祺
Ting, Yu Chi
關鍵詞 壅塞控制
可變速率
數據壅塞控制協定
網路電話
Congestion Control
Flexible Bit-rate
DCCP
VoIP
日期 2010
上傳時間 8-十二月-2010 12:13:00 (UTC+8)
摘要 近年來,一個具有壅塞控制機制的傳輸協議DCCP被提出,期能取代UDP成為不可靠傳輸的主流協議。我們以NS-2網路模擬器和實際網路進行實驗,發現DCCP無法與其他傳輸協議公平分享頻寬,因此現行DCCP的設計,尚無法完全取代UDP。此外,目前DCCP以調整封包間隔的方式進行壅塞控制,也不適用於講求時效性的網路服務。
本研究首先以實驗證明,當網路情況不佳時,DCCP無法與其他傳輸協議公平的分享頻寬;當使用DCCP傳輸越洋長距離網路電話,如遇頻寬不足時,會因頻寬競爭力較弱而無法維持通話品質。本研究提出可變速率方法(Flexible Bit-rate)調整時效性網路服務的封包大小來進行壅塞控制,在維持一定服務品質之前提下,促進網路的和諧。我們在一個實際網路的實驗環境中評估以UDP、DCCP及可變速率三種方式傳輸網路電話封包的效能,結果顯示透過可變速率方法,能有效降低網路電話的封包遺失率,維持通話品質。
With congestion-control ability, Datagram Congestion Control Protocol (DCCP) is expected to replace UDP as a mainstream unreliable transport protocol. But our study found that DCCP is not able to get a fair share of bandwidth under the competition of others transport protocols no matter in NS-2 simulation or real world networking environments. Furthermore, any congestion control protocol that postpones the transmission of packets may not be adequate to support time-sensitive network services.
To maintain the quality of time-sensitive network services as well as to be TCP-friendly when facing network bandwidth fluctuation, we propose a Flexible Bit-rate congestion control mechanism for VoIP to adjust their data rate. Our experiments show that Flexible Bit-rate congestion control method could effectively reduce the packet loss rate and to maintain VoIP quality as compared with UDP and DCCP. Furthermore, it can have a much better bandwidth efficiency and adjust better to network fluctuation.
參考文獻 [1] C. Albuquerque, B.J. Vickers, and T. Suda, "Network border patrol: Preventing congestion collapse and promoting fairness in the Internet," IEEE-ACM Transactions on Networking, vol. 12, no. 4, Dec. 2004, pp. 173-186.
[2] L. S. Brakmo, S. W. O’Malley, and Larry L. Peterson. "TCP Vegas: New Techniques for Congestion Detection and Avoidance," ACM SIGCOMM, Aug. 1994, pp. 24-35.
[3] D. Chiu and R. Jain, "Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks," Computer Networks and ISDN Systems, vol.1, 1989, pp. 1-14.
[4] A. Falk, D. Katabi, Y. Pryadkin," Specification for the Explicit Control Protocol (XCP)," draft-falk-xcp-03.txt (work in progress), July 2007.
[5] K. Fall and S. Floyd, "Simulation-based Comparisons of Tahoe, Reno, and SACK TCP," ACM Computer Communication Review, vol. 26, no.3, 1996, pp. 5-21.
[6] S. Floyd and T. Henderson, "The NewReno Modification to TCP`s Fast Recovery Algorithm," IETF RFC 2582, 1999.
[7] S. Floyd and E. Kohler, "Profile for DCCP Congestion Control ID 2: TCP-like Congestion Control," IETF draft-ietf-dccp-ccid2-08, http://www.ietf.org/internet-drafts/draft-ietfdccp-ccid2-10.txt, Mar. 2005.
[8] S. Floyd, E. Kohler, and J. Padhye, "Profile for DCCP Congestion Control ID 3: TFRC Congestion Control," IETF draft-ietf-dccp-ccid3-11, http://www.ietf.org/internetdrafts/draft-ietf-dccp-ccid3-11.txt, Mar. 2005.
[9] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, "The impact of multihop wireless channel on TCP throughput and loss," IEEE INFOCOM, San Francisco, CA, March 2003.
[10] Eddie Kohler, Mark Handley, and Sally Floyd, "Designing DCCP: Congestion Control Without Reliability," SIGCOMM 06, Sep. 2006, Pisa, Italy, pp. 27-38.
[11] V. Jacobson, "Congestion Avoidance and Control," ACM SIGCOMM, Aug. 1988, pp. 314-329.
[12] N. E. Mattsson, "A DCCP module for ns-2," http://epubl.luth.se/1402-1617/2004/175/LTU-EX-04175-SE.pdf, Sep. 2004.
[13] J.Nagle, "Congestion Control in TCP/IP," RFC896, Jan 1984.
[14] K. Nahm, A. Helmy, and C.-C J. Kuo, "TCP over Multihop 802.11 Networks: Issues and Performance Enhancement," ACM MobiHoc 05, Urbana-Champaign, Illinois, USA, May 2005.
[15] F. Sabrina and J.-M. Valin,"Adaptive Rate Control for Aggregated VoIP Traffic," GLOBECOM 2008, pp. 1405-1410.
[16] W. Stevens, "TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms," IETF RFC 2001, 1997.
[17] The E-Model, http://www.itu.int/rec/T-REC-G.107.
[18] "The Network Simulator - ns-2", http://www.isi.edu/nsnam/ns/.
[19] G.723, http://www.itu.int/rec/T-REC-G.723/e.
[20] G.729, http://www.itu.int/rec/T-REC-G.729/e.
[21] iLBC, http://www.ietf.org/rfc/rfc3951.txt.
[22] Mean Opinion Score, http://en.wikipedia.org/wiki/Mean_opinion_score.
[23] SpeeX, http://www.speex.org/.
描述 碩士
國立政治大學
資訊科學學系
97753014
99
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0977530141
資料類型 thesis
dc.contributor.advisor 連耀南zh_TW
dc.contributor.advisor Lien, Yao Nanen_US
dc.contributor.author (作者) 丁諭祺zh_TW
dc.contributor.author (作者) Ting, Yu Chien_US
dc.creator (作者) 丁諭祺zh_TW
dc.creator (作者) Ting, Yu Chien_US
dc.date (日期) 2010en_US
dc.date.accessioned 8-十二月-2010 12:13:00 (UTC+8)-
dc.date.available 8-十二月-2010 12:13:00 (UTC+8)-
dc.date.issued (上傳時間) 8-十二月-2010 12:13:00 (UTC+8)-
dc.identifier (其他 識別碼) G0977530141en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/49478-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 97753014zh_TW
dc.description (描述) 99zh_TW
dc.description.abstract (摘要) 近年來,一個具有壅塞控制機制的傳輸協議DCCP被提出,期能取代UDP成為不可靠傳輸的主流協議。我們以NS-2網路模擬器和實際網路進行實驗,發現DCCP無法與其他傳輸協議公平分享頻寬,因此現行DCCP的設計,尚無法完全取代UDP。此外,目前DCCP以調整封包間隔的方式進行壅塞控制,也不適用於講求時效性的網路服務。
本研究首先以實驗證明,當網路情況不佳時,DCCP無法與其他傳輸協議公平的分享頻寬;當使用DCCP傳輸越洋長距離網路電話,如遇頻寬不足時,會因頻寬競爭力較弱而無法維持通話品質。本研究提出可變速率方法(Flexible Bit-rate)調整時效性網路服務的封包大小來進行壅塞控制,在維持一定服務品質之前提下,促進網路的和諧。我們在一個實際網路的實驗環境中評估以UDP、DCCP及可變速率三種方式傳輸網路電話封包的效能,結果顯示透過可變速率方法,能有效降低網路電話的封包遺失率,維持通話品質。
zh_TW
dc.description.abstract (摘要) With congestion-control ability, Datagram Congestion Control Protocol (DCCP) is expected to replace UDP as a mainstream unreliable transport protocol. But our study found that DCCP is not able to get a fair share of bandwidth under the competition of others transport protocols no matter in NS-2 simulation or real world networking environments. Furthermore, any congestion control protocol that postpones the transmission of packets may not be adequate to support time-sensitive network services.
To maintain the quality of time-sensitive network services as well as to be TCP-friendly when facing network bandwidth fluctuation, we propose a Flexible Bit-rate congestion control mechanism for VoIP to adjust their data rate. Our experiments show that Flexible Bit-rate congestion control method could effectively reduce the packet loss rate and to maintain VoIP quality as compared with UDP and DCCP. Furthermore, it can have a much better bandwidth efficiency and adjust better to network fluctuation.
en_US
dc.description.tableofcontents 第一章 緒論 1
1.1數據壅塞控制協定(DCCP) 2
1.2 DCCP-BASED VOIP 2
1.3研究目的與方法 3
1.4章節安排 4
第二章 背景與相關研究 5
2.1壅塞崩潰 5
2.2壅塞控制 5
2.3數據壅塞控制協定(DCCP) 6
2.4 TCP的壅塞控制 6
2.4.1 TCP Tahoe和Reno 6
2.4.2 TCP Vegas 7
2.4.3 其他版本 TCP 8
2.5 DCCP的壅塞控制 8
2.5.1 CCID 2: TCP-Like壅塞控制 8
2.5.2 CCID 3: TFRC壅塞控制 8
2.6 VOIP語音封包產生流程 9
2.6.1 取樣與編碼 10
2.6.2封包封裝與傳輸 10
2.6.3影響通話品質的參數 11
2.7 VOIP通話品質評量指標 11
2.7.1 MOS 11
2.7.2 E-Model 12
2.7 現有改變語音壓縮速率的VOIP壅塞控制機制 13
第三章 數據壅塞控制協定頻寬競爭分析 15
3.1實驗設計 15
3.2頻寬競爭分析 17
3.3 VOIP通話品質分析 29
3.4小結 36
第四章 調整封包大小的壅塞控制方法 37
4.1 設計目標 38
4.1.1手動調整方法 38
4.1.2自動調整方法 38
4.2 BIT-RATE調整演算法 38
4.2.1壅塞偵測方法 38
4.2.1降低Bit-rate演算法 40
4.2.2提升Bit-rate演算法 41
4.2.3調整Bit-rate範例 41
第五章 實驗與效能評估 42
5.1評估指標 42
5.2實驗環境 42
5.3實驗一 43
5.3.1實驗結果與分析 44
5.4實驗二 44
5.4.1實驗結果與分析 45
5.5實驗三 45
5.5.1 UDP-Based VoIP實驗結果與分析 46
5.5.2 DCCP-Based VoIP實驗結果與分析 50
5.5.3 Flexible Bit-rate VoIP實驗結果與分析 54
5.5.4三種傳輸方式實驗結果與分析 58
5.6 小結 62
第六章 結論與未來研究 63
參考文獻 64
zh_TW
dc.format.extent 1691026 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0977530141en_US
dc.subject (關鍵詞) 壅塞控制zh_TW
dc.subject (關鍵詞) 可變速率zh_TW
dc.subject (關鍵詞) 數據壅塞控制協定zh_TW
dc.subject (關鍵詞) 網路電話zh_TW
dc.subject (關鍵詞) Congestion Controlen_US
dc.subject (關鍵詞) Flexible Bit-rateen_US
dc.subject (關鍵詞) DCCPen_US
dc.subject (關鍵詞) VoIPen_US
dc.title (題名) 利用可變速率方法賦予網路電話壅塞控制能力zh_TW
dc.title (題名) Congestion Control Enabled VoIP by Flexible Bit-rateen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] C. Albuquerque, B.J. Vickers, and T. Suda, "Network border patrol: Preventing congestion collapse and promoting fairness in the Internet," IEEE-ACM Transactions on Networking, vol. 12, no. 4, Dec. 2004, pp. 173-186.zh_TW
dc.relation.reference (參考文獻) [2] L. S. Brakmo, S. W. O’Malley, and Larry L. Peterson. "TCP Vegas: New Techniques for Congestion Detection and Avoidance," ACM SIGCOMM, Aug. 1994, pp. 24-35.zh_TW
dc.relation.reference (參考文獻) [3] D. Chiu and R. Jain, "Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks," Computer Networks and ISDN Systems, vol.1, 1989, pp. 1-14.zh_TW
dc.relation.reference (參考文獻) [4] A. Falk, D. Katabi, Y. Pryadkin," Specification for the Explicit Control Protocol (XCP)," draft-falk-xcp-03.txt (work in progress), July 2007.zh_TW
dc.relation.reference (參考文獻) [5] K. Fall and S. Floyd, "Simulation-based Comparisons of Tahoe, Reno, and SACK TCP," ACM Computer Communication Review, vol. 26, no.3, 1996, pp. 5-21.zh_TW
dc.relation.reference (參考文獻) [6] S. Floyd and T. Henderson, "The NewReno Modification to TCP`s Fast Recovery Algorithm," IETF RFC 2582, 1999.zh_TW
dc.relation.reference (參考文獻) [7] S. Floyd and E. Kohler, "Profile for DCCP Congestion Control ID 2: TCP-like Congestion Control," IETF draft-ietf-dccp-ccid2-08, http://www.ietf.org/internet-drafts/draft-ietfdccp-ccid2-10.txt, Mar. 2005.zh_TW
dc.relation.reference (參考文獻) [8] S. Floyd, E. Kohler, and J. Padhye, "Profile for DCCP Congestion Control ID 3: TFRC Congestion Control," IETF draft-ietf-dccp-ccid3-11, http://www.ietf.org/internetdrafts/draft-ietf-dccp-ccid3-11.txt, Mar. 2005.zh_TW
dc.relation.reference (參考文獻) [9] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, "The impact of multihop wireless channel on TCP throughput and loss," IEEE INFOCOM, San Francisco, CA, March 2003.zh_TW
dc.relation.reference (參考文獻) [10] Eddie Kohler, Mark Handley, and Sally Floyd, "Designing DCCP: Congestion Control Without Reliability," SIGCOMM 06, Sep. 2006, Pisa, Italy, pp. 27-38.zh_TW
dc.relation.reference (參考文獻) [11] V. Jacobson, "Congestion Avoidance and Control," ACM SIGCOMM, Aug. 1988, pp. 314-329.zh_TW
dc.relation.reference (參考文獻) [12] N. E. Mattsson, "A DCCP module for ns-2," http://epubl.luth.se/1402-1617/2004/175/LTU-EX-04175-SE.pdf, Sep. 2004.zh_TW
dc.relation.reference (參考文獻) [13] J.Nagle, "Congestion Control in TCP/IP," RFC896, Jan 1984.zh_TW
dc.relation.reference (參考文獻) [14] K. Nahm, A. Helmy, and C.-C J. Kuo, "TCP over Multihop 802.11 Networks: Issues and Performance Enhancement," ACM MobiHoc 05, Urbana-Champaign, Illinois, USA, May 2005.zh_TW
dc.relation.reference (參考文獻) [15] F. Sabrina and J.-M. Valin,"Adaptive Rate Control for Aggregated VoIP Traffic," GLOBECOM 2008, pp. 1405-1410.zh_TW
dc.relation.reference (參考文獻) [16] W. Stevens, "TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms," IETF RFC 2001, 1997.zh_TW
dc.relation.reference (參考文獻) [17] The E-Model, http://www.itu.int/rec/T-REC-G.107.zh_TW
dc.relation.reference (參考文獻) [18] "The Network Simulator - ns-2", http://www.isi.edu/nsnam/ns/.zh_TW
dc.relation.reference (參考文獻) [19] G.723, http://www.itu.int/rec/T-REC-G.723/e.zh_TW
dc.relation.reference (參考文獻) [20] G.729, http://www.itu.int/rec/T-REC-G.729/e.zh_TW
dc.relation.reference (參考文獻) [21] iLBC, http://www.ietf.org/rfc/rfc3951.txt.zh_TW
dc.relation.reference (參考文獻) [22] Mean Opinion Score, http://en.wikipedia.org/wiki/Mean_opinion_score.zh_TW
dc.relation.reference (參考文獻) [23] SpeeX, http://www.speex.org/.zh_TW