學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 臺灣華語的口語詞彙辨識歷程: 從雙音節詞來看
Spoken word recognition in Taiwan Mandarin: evidence from isolated disyllabic words
作者 錢昱夫
Chien, Yu Fu
貢獻者 萬依萍
Wan, I Ping
錢昱夫
Chien, Yu Fu
關鍵詞 口語詞彙辨識歷程
臺灣華語
華語聲調
音段
Cohort模型
Merge模型
spoken word recognition
Taiwan Mandarin
Mandarin tones
segments
Cohort
Merge
日期 2010
上傳時間 5-Oct-2011 14:25:45 (UTC+8)
摘要 論文提要內容:(共一冊,17770字,分六章)
本研究用雙音節詞來探討不同音段和聲調在臺灣華語的口語詞彙辨識歷程中的重要性。Cohort模型(1978)非常強調詞首訊息的重要性,然而Merge模型(2000)認為訊息輸入和音韻表徵的整體吻合才是最重要的。因此,本研究企圖探索不同音段和詞首詞尾在臺灣華語的口語詞彙辨識歷程中的重要性。然而,聲調的問題並無在先前的模型裡被討論。因此,聲調在臺灣華語的口語詞彙辨識歷程中所扮演的角色也會在本研究中被討論。另外,詞頻效應也會在本研究中被探索。本研究的三個實驗均由同樣的十五名受試者參加。實驗一是測試不同音段在臺灣華語的口語詞彙辨識歷程中的重要性。實驗一操弄十二個雙音節高頻詞和十二個雙音節低頻詞,每一個雙音節詞的每一個音段都分別被噪音擋住。實驗二是在探索詞首和詞尾在臺灣華語的口語詞彙辨識歷程中的重要性。實驗二操弄十二個雙音節高頻詞和十二個雙音節低頻詞。這些雙音節詞的詞首CV或詞尾VG/N都分別被雜音擋住。實驗三操弄二十四個雙音節高頻詞和二十四個雙音節低頻詞。這些雙音節詞的聲調都被拉平到100赫茲。在這三個實驗中,受試者必須聽這些被操弄過的雙音節詞,並且辨認它們。受試者的反應時間和辨詞的準確率都用E-Prime來記錄。實驗結果顯示,傳統的Cohort模型不能被完全支持,因為詞首訊息被噪音擋住的詞仍能被受試者成功的辨識出來。強調聲音訊息和音韻表徵的整體吻合度的Merge模型,比較能解釋實驗的結果。然而,Merge模型必須要加入韻律節點才能處理臺灣華語的聲調辨識的問題。本研究也顯示,雙音節詞的第一個音節的母音在口語詞彙辨識歷程中是最重要的,而雙音節詞的第二個音節的母音是第二重要的。這是因為母音帶了最多訊息,包括聲調。另外,雙音節詞的詞首和詞尾在臺灣華語的口語詞彙辨識歷程中是扮演差不多重要的角色。母音對於聲調的感知是最重要的。詞頻效應也完全表現在臺灣華語的口語詞彙辨識歷程中。

關鍵詞:口語詞彙辨識歷程、臺灣華語、華語聲調、音段、Cohort模型、Merge模型
The present study investigated the importance of different segments and the importance of tone in spoken word recognition in Taiwan Mandarin by using isolated disyllabic words. Cohort model (1978) emphasized the absolute importance of the initial information. On the contrary, Merge (2000) proposed that the overall match between the input and the phonological representation is the most crucial. Therefore, this study tried to investigate the importance of different segments and the importance of onsets and offsets in the processing of Mandarin spoken words. However, the issues of tone were not included in the previous models. Thus, the importance of tone was also investigated in this study. The issues about frequency effect were also explored here. Three experiments were designed in this study. Fifteen subjects were invited to participate in all three experiments. Experiment 1 was designed to investigate the importance of different segments in Taiwan Mandarin. In experiment 1, 12 high-frequency disyllabic words and 12 low-frequency disyllabic words were selected. Each segment of each disyllabic word was replaced by the hiccup noise. Experiment 2 was designed to investigate the importance of onsets and offsets. In experiment 2, 12 high-frequency disyllabic words and 12 low-frequency disyllabic words were chosen. The CV of the first syllable and the VG/N of the second syllable were replaced by the hiccup noise. Experiment 3 was designed to investigate the importance of Mandarin tones. In experiment 3, 24 high-frequency disyllabic words and 24 low-frequency disyllabic words were selected. The tones of the disyllabic words were leveled to 100 Hz. In the three experiments, subjects listened to the stimuli and recognized them. The reaction time and accuracy were measured by E-Prime. The results indicated that traditional Cohort model cannot be fully supported because words can still be correctly recognized when word initial information is disruptive. Merge model, which proposed that the overall match between the input and the lexical representation is the most important, was more compatible with the results here. However, Merge model needs to include the prosody nodes, so that it can account for the processing of tones in Taiwan Mandarin. In addition, the current study also showed that the first vowel of the disyllabic word is the most crucial and the second vowel of the disyllabic word is the second influential since the vowel carries the most important information, including tones. The results of experiment 2 demonstrated that the onsets and offsets are almost the same important in Mandarin. Furthermore, vowel is the most influential segment for the perception of Mandarin tones. Finally, frequency effect appeared in the processing of Mandarin words.

Keywords: spoken word recognition, Taiwan Mandarin, Mandarin tones, segments, Cohort, Merge
參考文獻 Connine, C. M., Blasko, D., & Wang, J. (1994). Vertical similarity and spoken word recognition: Multiple lexical activation, individual differences, and the role of sentence context. Perception and Psychophysics, 56, 624-636.
Cutler A., & Chen, H.-C. (1997). Lexical tone in Cantonese spoken word processing. Perception and Psychophysics, 59 (2), 165-179.
Fox, R. A., & Unkefer, J. (1985). The effect of lexical status on the perception of tone. Journal of Chinese Linguistics, 13, 69-90.
Frauenfelder, U. H.; Tyler, L. K. (1987). The process of spoken word recognition: An introduction. Cognition, 25, 1-20.
Grosjean, F. (1980). Spoken word recognition processes and the gating paradigm. Perception and Psychophysics, 28, 267-283.
Grosjean, F. (1985). The recognition of words after their acoustic offset: Evidence and implications. Perception and Psychophysics, 38, 299-310.
Lee, C-Y. (2000). Lexical tone in spoken word recognition: A view from Mandarin Chinese. Doctoral dissertation, Brown University.
Jongman, A.; Wang, Y.; Moore, C.; Sereno, J. A. Perception and production of Mandarin Chinese tones. Handbook of Chinese Psycholinguistics. E. Bates, L. H.; Tan, & Tzeng, O. J. L. (eds.). Cambridge University Press.
Jusczyk, P. W. & Luce, P. A. (2002). Speech perception and spoken word recognition: Past and present. Ear & Hearing, 23, 2-40.
Marslen-Wilson, W. D. & Welsh, A. (1978). Processing interactions during word recognition in continuous speech. Cognition, 10, 29-63.
Marslen-Wilson, W. D. & Tyler, L. K. (1980). The temporal structure of spoken language understanding. Cognition, 8, 1-71.
Marslen-Wilson, W. D., & Zwitserlood, P. (1989). Accessing spoken words: The importance of word onsets. Journal of Experimental Psychology: Human Perception and Performance, 15, 576-585.
McClelland, J. L. & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18, 1-86.
Milberg, M.; Blumstein, S.; & Dworetzky, B. (1988). Phonological factors in lexical access: Evidence from an auditory lexical decision task. Bulletin of the Psychonomic Society, 26, 305-308.
Nooteboom, S. G.; van der Vlugt, M. J. (1988). A search for a word-beginning superiority effect. The Journal of the Acoustical Society of America, 84, 2018-2032.
Norris, D. (1994). Shortlist: A connectionist model of continuous speech recognition. Cognition, 52, 189-234.
Norris, D.; McQueen, J. M.; Cutler, A. (2000). Merging information in speech recognition: Feedback is never necessary. Behavioral and Brain Sciences, 23, 299-370.
Salasoo, A., & Pisono, D. (1985). Interaction of knowledge sources in spoken word identification. Journal of Memory and Language, 24, 210-231.
Slowiaczek, L., M., Nusbaum, H., C., Pisoni, D., B. (1987). Phonological priming in auditory word recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 64-75.
Tyler, L. K., & Wessels, J. (1983). Quantifying contextual contributions to word-recognition processes. Perception and Psychophysics, 34, 409-420.
Tyler, L. K., (1984). The structure of the initial cohort: Evidence from gating. Perception and Psychophysics, 36, 417-427.
Tyler, L. K., & Wessels, J. (1985). Is gating an on-line task? Evidence from naming latency data. Perception and Psychophysics, 38, 217-222.
Wayland, S. C.; Wingfield, A.; Goodglass, H. (1989). Recognition of isolated words: The dynamics of cohort reduction. Applied Psycholinguistics, 10, 475-487.
Wingfield, A.; Goodglass, H.; Lindfield, K. C. (1997). Word recognition from acoustic onsets and acoustic offsets: Effects of cohort size and syllabic stress. Applied Psycholingustics, 18, 85-100.
Ye, Y. & Connine, C. M. (1999). Processing spoken Chinese: The role of tone information. Language and Cognitive Processes, 14(5/6), 609-630.
描述 碩士
國立政治大學
語言學研究所
97555004
99
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0097555004
資料類型 thesis
dc.contributor.advisor 萬依萍zh_TW
dc.contributor.advisor Wan, I Pingen_US
dc.contributor.author (Authors) 錢昱夫zh_TW
dc.contributor.author (Authors) Chien, Yu Fuen_US
dc.creator (作者) 錢昱夫zh_TW
dc.creator (作者) Chien, Yu Fuen_US
dc.date (日期) 2010en_US
dc.date.accessioned 5-Oct-2011 14:25:45 (UTC+8)-
dc.date.available 5-Oct-2011 14:25:45 (UTC+8)-
dc.date.issued (上傳時間) 5-Oct-2011 14:25:45 (UTC+8)-
dc.identifier (Other Identifiers) G0097555004en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/51158-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 語言學研究所zh_TW
dc.description (描述) 97555004zh_TW
dc.description (描述) 99zh_TW
dc.description.abstract (摘要) 論文提要內容:(共一冊,17770字,分六章)
本研究用雙音節詞來探討不同音段和聲調在臺灣華語的口語詞彙辨識歷程中的重要性。Cohort模型(1978)非常強調詞首訊息的重要性,然而Merge模型(2000)認為訊息輸入和音韻表徵的整體吻合才是最重要的。因此,本研究企圖探索不同音段和詞首詞尾在臺灣華語的口語詞彙辨識歷程中的重要性。然而,聲調的問題並無在先前的模型裡被討論。因此,聲調在臺灣華語的口語詞彙辨識歷程中所扮演的角色也會在本研究中被討論。另外,詞頻效應也會在本研究中被探索。本研究的三個實驗均由同樣的十五名受試者參加。實驗一是測試不同音段在臺灣華語的口語詞彙辨識歷程中的重要性。實驗一操弄十二個雙音節高頻詞和十二個雙音節低頻詞,每一個雙音節詞的每一個音段都分別被噪音擋住。實驗二是在探索詞首和詞尾在臺灣華語的口語詞彙辨識歷程中的重要性。實驗二操弄十二個雙音節高頻詞和十二個雙音節低頻詞。這些雙音節詞的詞首CV或詞尾VG/N都分別被雜音擋住。實驗三操弄二十四個雙音節高頻詞和二十四個雙音節低頻詞。這些雙音節詞的聲調都被拉平到100赫茲。在這三個實驗中,受試者必須聽這些被操弄過的雙音節詞,並且辨認它們。受試者的反應時間和辨詞的準確率都用E-Prime來記錄。實驗結果顯示,傳統的Cohort模型不能被完全支持,因為詞首訊息被噪音擋住的詞仍能被受試者成功的辨識出來。強調聲音訊息和音韻表徵的整體吻合度的Merge模型,比較能解釋實驗的結果。然而,Merge模型必須要加入韻律節點才能處理臺灣華語的聲調辨識的問題。本研究也顯示,雙音節詞的第一個音節的母音在口語詞彙辨識歷程中是最重要的,而雙音節詞的第二個音節的母音是第二重要的。這是因為母音帶了最多訊息,包括聲調。另外,雙音節詞的詞首和詞尾在臺灣華語的口語詞彙辨識歷程中是扮演差不多重要的角色。母音對於聲調的感知是最重要的。詞頻效應也完全表現在臺灣華語的口語詞彙辨識歷程中。

關鍵詞:口語詞彙辨識歷程、臺灣華語、華語聲調、音段、Cohort模型、Merge模型
zh_TW
dc.description.abstract (摘要) The present study investigated the importance of different segments and the importance of tone in spoken word recognition in Taiwan Mandarin by using isolated disyllabic words. Cohort model (1978) emphasized the absolute importance of the initial information. On the contrary, Merge (2000) proposed that the overall match between the input and the phonological representation is the most crucial. Therefore, this study tried to investigate the importance of different segments and the importance of onsets and offsets in the processing of Mandarin spoken words. However, the issues of tone were not included in the previous models. Thus, the importance of tone was also investigated in this study. The issues about frequency effect were also explored here. Three experiments were designed in this study. Fifteen subjects were invited to participate in all three experiments. Experiment 1 was designed to investigate the importance of different segments in Taiwan Mandarin. In experiment 1, 12 high-frequency disyllabic words and 12 low-frequency disyllabic words were selected. Each segment of each disyllabic word was replaced by the hiccup noise. Experiment 2 was designed to investigate the importance of onsets and offsets. In experiment 2, 12 high-frequency disyllabic words and 12 low-frequency disyllabic words were chosen. The CV of the first syllable and the VG/N of the second syllable were replaced by the hiccup noise. Experiment 3 was designed to investigate the importance of Mandarin tones. In experiment 3, 24 high-frequency disyllabic words and 24 low-frequency disyllabic words were selected. The tones of the disyllabic words were leveled to 100 Hz. In the three experiments, subjects listened to the stimuli and recognized them. The reaction time and accuracy were measured by E-Prime. The results indicated that traditional Cohort model cannot be fully supported because words can still be correctly recognized when word initial information is disruptive. Merge model, which proposed that the overall match between the input and the lexical representation is the most important, was more compatible with the results here. However, Merge model needs to include the prosody nodes, so that it can account for the processing of tones in Taiwan Mandarin. In addition, the current study also showed that the first vowel of the disyllabic word is the most crucial and the second vowel of the disyllabic word is the second influential since the vowel carries the most important information, including tones. The results of experiment 2 demonstrated that the onsets and offsets are almost the same important in Mandarin. Furthermore, vowel is the most influential segment for the perception of Mandarin tones. Finally, frequency effect appeared in the processing of Mandarin words.

Keywords: spoken word recognition, Taiwan Mandarin, Mandarin tones, segments, Cohort, Merge
en_US
dc.description.tableofcontents CHAPTER 1 INTRODUCTION……………………………………………………...1
1.1 The background of spoken word recognition………………………………...1
1.2 Motivation and research questions…………………………………………...4
1.3 Organization………………………………………………………………….9
CHAPTER 2 LITERATURE REVIEW……………………………………………...10
2.1 Models of spoken word recognition………………………………………...10
2.1.1 Cohort model (1980)…………………………………………….......10
2.1.2 Merge (2000)………………………………………………………...13
2.2 The role of acoustic onsets and offsets……………………………………...15
2.3 Mandarin phonological system……………………………………………..20
2.4 The acoustic-phonetic cues of the consonants in Taiwan Mandarin………..20
2.4.1 The acoustic-phonetic cues of stops…………………………………21
2.4.2 The acoustic-phonetic cues of nasals………………………………..22
2.4.3 The acoustic-phonetic cues of fricatives…………………………….22
2.4.4 The acoustic-phonetic cues of affricates…………………………….25
2.5 The acoustic-phonetic cues of the vowels in Taiwan Mandarin…………….25
2.6 Mandarin tone………………………………………………………………25
2.6.1The perception of Mandarin Chinese tones…………………………..25
2.6.2 The processing of Mandarin tone……………………………………29
2.7 Summary……………………………………………………………………31
CHAPTER 3 METHODS……………………………………………………………33
3.1 Subjects……………………………………………………………………..33
3.2 Equipment…………………………………………………………………..33
3.3 Stimuli………………………………………………………………………33
3.3.1 Word frequencies…………………………………………………….34
3.3.2 Segmentation………………………………………………………...34
3.3.2.1 Segmentation of the initial consonant………………………..35
3.3.2.2 Segmentation of prenuclear glides…………………………...36
3.3.2.3 Segmentation of vowels……………………………………...39
3.3.2.4 Segmentation of postnuclear glides, and final nasals………...41
3.3.3 The leveling of tones………………………………………………...42
3.4 Design……………………………………………………………………….43
3.5 Procedures…………………………………………………………………..46
CHAPTER 4 RESULTS……………………………………………………………...48
4.1 Experiment 1: one-segment disruption...........................................................48
4.2 Experiment 2: two-segment disruption...…………………………….……..53
4.3 Experiment 3: tone leveling...........................................................................60
CHAPTER 5 DISCUSSION…………………………………………………………64
5.1 The results and the two models (Cohort and Merge).....................................64
5.2 Cohort and Merge models in Taiwan Mandarin…………………………….66
5.3 Merge model: Spoken word recognition in Taiwan Mandarin.......................70
CHAPTER 6 CONCLUSION………………………………………………………..74
REFERENCES……………………………………………………………………….77
APPENDIX 1………………………………………………………………………...79
APPENDIX 2………………………………………………………………………...81
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0097555004en_US
dc.subject (關鍵詞) 口語詞彙辨識歷程zh_TW
dc.subject (關鍵詞) 臺灣華語zh_TW
dc.subject (關鍵詞) 華語聲調zh_TW
dc.subject (關鍵詞) 音段zh_TW
dc.subject (關鍵詞) Cohort模型zh_TW
dc.subject (關鍵詞) Merge模型zh_TW
dc.subject (關鍵詞) spoken word recognitionen_US
dc.subject (關鍵詞) Taiwan Mandarinen_US
dc.subject (關鍵詞) Mandarin tonesen_US
dc.subject (關鍵詞) segmentsen_US
dc.subject (關鍵詞) Cohorten_US
dc.subject (關鍵詞) Mergeen_US
dc.title (題名) 臺灣華語的口語詞彙辨識歷程: 從雙音節詞來看zh_TW
dc.title (題名) Spoken word recognition in Taiwan Mandarin: evidence from isolated disyllabic wordsen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Connine, C. M., Blasko, D., & Wang, J. (1994). Vertical similarity and spoken word recognition: Multiple lexical activation, individual differences, and the role of sentence context. Perception and Psychophysics, 56, 624-636.zh_TW
dc.relation.reference (參考文獻) Cutler A., & Chen, H.-C. (1997). Lexical tone in Cantonese spoken word processing. Perception and Psychophysics, 59 (2), 165-179.zh_TW
dc.relation.reference (參考文獻) Fox, R. A., & Unkefer, J. (1985). The effect of lexical status on the perception of tone. Journal of Chinese Linguistics, 13, 69-90.zh_TW
dc.relation.reference (參考文獻) Frauenfelder, U. H.; Tyler, L. K. (1987). The process of spoken word recognition: An introduction. Cognition, 25, 1-20.zh_TW
dc.relation.reference (參考文獻) Grosjean, F. (1980). Spoken word recognition processes and the gating paradigm. Perception and Psychophysics, 28, 267-283.zh_TW
dc.relation.reference (參考文獻) Grosjean, F. (1985). The recognition of words after their acoustic offset: Evidence and implications. Perception and Psychophysics, 38, 299-310.zh_TW
dc.relation.reference (參考文獻) Lee, C-Y. (2000). Lexical tone in spoken word recognition: A view from Mandarin Chinese. Doctoral dissertation, Brown University.zh_TW
dc.relation.reference (參考文獻) Jongman, A.; Wang, Y.; Moore, C.; Sereno, J. A. Perception and production of Mandarin Chinese tones. Handbook of Chinese Psycholinguistics. E. Bates, L. H.; Tan, & Tzeng, O. J. L. (eds.). Cambridge University Press.zh_TW
dc.relation.reference (參考文獻) Jusczyk, P. W. & Luce, P. A. (2002). Speech perception and spoken word recognition: Past and present. Ear & Hearing, 23, 2-40.zh_TW
dc.relation.reference (參考文獻) Marslen-Wilson, W. D. & Welsh, A. (1978). Processing interactions during word recognition in continuous speech. Cognition, 10, 29-63.zh_TW
dc.relation.reference (參考文獻) Marslen-Wilson, W. D. & Tyler, L. K. (1980). The temporal structure of spoken language understanding. Cognition, 8, 1-71.zh_TW
dc.relation.reference (參考文獻) Marslen-Wilson, W. D., & Zwitserlood, P. (1989). Accessing spoken words: The importance of word onsets. Journal of Experimental Psychology: Human Perception and Performance, 15, 576-585.zh_TW
dc.relation.reference (參考文獻) McClelland, J. L. & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18, 1-86.zh_TW
dc.relation.reference (參考文獻) Milberg, M.; Blumstein, S.; & Dworetzky, B. (1988). Phonological factors in lexical access: Evidence from an auditory lexical decision task. Bulletin of the Psychonomic Society, 26, 305-308.zh_TW
dc.relation.reference (參考文獻) Nooteboom, S. G.; van der Vlugt, M. J. (1988). A search for a word-beginning superiority effect. The Journal of the Acoustical Society of America, 84, 2018-2032.zh_TW
dc.relation.reference (參考文獻) Norris, D. (1994). Shortlist: A connectionist model of continuous speech recognition. Cognition, 52, 189-234.zh_TW
dc.relation.reference (參考文獻) Norris, D.; McQueen, J. M.; Cutler, A. (2000). Merging information in speech recognition: Feedback is never necessary. Behavioral and Brain Sciences, 23, 299-370.zh_TW
dc.relation.reference (參考文獻) Salasoo, A., & Pisono, D. (1985). Interaction of knowledge sources in spoken word identification. Journal of Memory and Language, 24, 210-231.zh_TW
dc.relation.reference (參考文獻) Slowiaczek, L., M., Nusbaum, H., C., Pisoni, D., B. (1987). Phonological priming in auditory word recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 64-75.zh_TW
dc.relation.reference (參考文獻) Tyler, L. K., & Wessels, J. (1983). Quantifying contextual contributions to word-recognition processes. Perception and Psychophysics, 34, 409-420.zh_TW
dc.relation.reference (參考文獻) Tyler, L. K., (1984). The structure of the initial cohort: Evidence from gating. Perception and Psychophysics, 36, 417-427.zh_TW
dc.relation.reference (參考文獻) Tyler, L. K., & Wessels, J. (1985). Is gating an on-line task? Evidence from naming latency data. Perception and Psychophysics, 38, 217-222.zh_TW
dc.relation.reference (參考文獻) Wayland, S. C.; Wingfield, A.; Goodglass, H. (1989). Recognition of isolated words: The dynamics of cohort reduction. Applied Psycholinguistics, 10, 475-487.zh_TW
dc.relation.reference (參考文獻) Wingfield, A.; Goodglass, H.; Lindfield, K. C. (1997). Word recognition from acoustic onsets and acoustic offsets: Effects of cohort size and syllabic stress. Applied Psycholingustics, 18, 85-100.zh_TW
dc.relation.reference (參考文獻) Ye, Y. & Connine, C. M. (1999). Processing spoken Chinese: The role of tone information. Language and Cognitive Processes, 14(5/6), 609-630.zh_TW