dc.contributor.advisor | 楊素芬 | zh_TW |
dc.contributor.advisor | Yang,Su Fen | en_US |
dc.contributor.author (Authors) | 呂雨築 | zh_TW |
dc.contributor.author (Authors) | Lu, Yu Chu | en_US |
dc.creator (作者) | 呂雨築 | zh_TW |
dc.creator (作者) | Lu, Yu Chu | en_US |
dc.date (日期) | 2010 | en_US |
dc.date.accessioned | 5-Oct-2011 14:31:56 (UTC+8) | - |
dc.date.available | 5-Oct-2011 14:31:56 (UTC+8) | - |
dc.date.issued (上傳時間) | 5-Oct-2011 14:31:56 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0098354004 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/51201 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 統計研究所 | zh_TW |
dc.description (描述) | 98354004 | zh_TW |
dc.description (描述) | 99 | zh_TW |
dc.description.abstract (摘要) | 利用單一二元損失管制圖來偵測製程平均數向量及共變異數矩陣同時偏移。不同於已存在的多元管制圖,本文所提出的管制圖是以二元平均損失函數建構而成的,因此,在監控製程時,我們同時能獲得產品平均損失的資訊。平均連串長度分析結果指出二元損失管制圖在偵測製程小幅度偏移上有不錯的其偵測能力。本文將與現存的多元方法做績效表現的比較,例如:二元管制圖、多元的累積管制圖和多元的指數加權平均管制圖等。結果顯示,二元損失管制圖在偵測程平均數向量及共變異數矩陣同時偏移的情況下有較好的偵測能力。 | zh_TW |
dc.description.tableofcontents | Table of ContentsChapter 1 INTRODUCTION 11.1 The Importance of the Process Control 11.2 Research Problem 11.3 Research Purpose 21.4 Literature Review 21.5 Proposed Method and Structure 8Chapter 2 THE BIVARIATE LOSS CONTROL CHART 92.1 Design of the Bivariate Loss Chart 92.2 Average Bivariate Loss and its Distribution 92.3 The Approximated Distribution of BL 112.4 The Control Limits of the BL Chart 132.5 The Out-of-control Approximate Distribution of BL 142.6 Performance Measurement of the BL Chart 152.7 Illustrating Example of the Bivariate Loss Chart 162.8 ARL1 of the Bivariate Loss Chart 262.9 The Bivariate Loss Chart with Optimal Sample Size and Sampling Interval 422.10 ATS1 Comparison of the Specified Bivariate Loss Chart and the Optimal Bivariate Loss Chart 51Chapter 3 THE VSSI BIVARAITE LOSS CONTROL CHART 563.1 Design of the VSSI Bivariate Loss Chart 563.2 The Approximate Distribution of BL 573.3 The Control Limits of the VSSI BL Chart 583.4 The Out-of-control Approximate Distribution of BL 593.5 Performance Measurement of the VSSI BL Chart 593.6 Example for the VSSI Bivariate Loss Chart 61Chapter 4 ATS1 ANALYSIS OF THE VSSI BIVARIATE LOSS CHART AND ATS1 COMPARISON BETWEEN THE BL CHART AND THE VSSI BL CHART 654.1 The Specified ( ) VSSI Bivariate Loss Chart 654.2 The VSSI Bivariate Loss Chart With Optimal ( ) 714.3 The OptimalVSSI Bivariate Loss Chart 78Chapter 5 PERFORMANCE COMPARISON WITH SOME EXISTING METHODS 845.1 ARL1 Comparison of the BL Chart and Khoo’s Max Bivariate Control Chart 845.2 ARL1 Comparison for the BL Chart, MSE Chart, Max-CUSUM Chart and Max- MEWMA Chart 935.3 ARL1 Comparison for the Bivariate Loss Chart, EWMA V- Chart, EWMA M-Chart, MEWMA Chart and - Chart 96Chapter 6 CONCLUSION AND FUTURE RESEARCH 101Appendices 103Appendix A 103Appendix B 106Appendix C 113References 116 | zh_TW |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0098354004 | en_US |
dc.subject (關鍵詞) | 二元損失管制圖 | zh_TW |
dc.title (題名) | 二元損失管制圖之設計 | zh_TW |
dc.title (題名) | Design of the bivariate loss control chart | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | 1. Alt, F. B. (1985), “Multivariate quality control,” In: Kotz, S. and Johnson, N., eds. Encyclopedia of Statistics. 6, John Wiley & Sons, New York, NY, 110-122. | zh_TW |
dc.relation.reference (參考文獻) | 2. Alt, F. B. and Bedewi, G. E. (1986), “SPC for dispersion for multivariate data,” ASQC. Qual. Congress Trans, 248-254. | zh_TW |
dc.relation.reference (參考文獻) | 3. Aparisi F. and Haro, C. L. (2001), “Hotelling T2 control chart with variable sampling intervals,” Int. J. Prod. Res, 39(14), 3127-3140. | zh_TW |
dc.relation.reference (參考文獻) | 4. Chan, L. K. and Zhang, J. (2001), “Cumulative sum control chart for the covariance matrix,” Statist. Sinica, 11, 767-790. | zh_TW |
dc.relation.reference (參考文獻) | 5. Chen Y. K. and Hsieh K. L. (2007), “Hotelling T2 control chart with variable sample size and control limit,” European Journal of Operational Research, 182, 1251 – 1262. | zh_TW |
dc.relation.reference (參考文獻) | 6. Cheng, G. Z. (1995), “A Study of an Application on the Multi-Characteristic Quality Loss Function,” Master’s Thesis, Providence University, Shalu, Taiwan. | zh_TW |
dc.relation.reference (參考文獻) | 7. Cheng, S. W. and Thaga, K. (2005), ”Multivariate Max-CUSUM chart,” Quality Technology & Quantitative Management, 2(2), 221-235. | zh_TW |
dc.relation.reference (參考文獻) | 8. Chou, C. Y., Liu, H. R., Chen, C. H. and Huang, X. R. (2002), “Economic-statistical design of multivariate control charts using quality loss function,” Int J Adv Manuf Technol, 20, 916-924. | zh_TW |
dc.relation.reference (參考文獻) | 9. Costa, A. F. B. and Machado, M. A. G. (2009), “A new chart based on sample variances for monitoring the covariance matrix of multivariate processes,” Int J Adv Manuf Technol, 41, 770-779. | zh_TW |
dc.relation.reference (參考文獻) | 10. Crosier, R. B. (1988), “Multivariate generalizations of cumolative sum quality control schemes,” Technometrics, 30, 291-303. | zh_TW |
dc.relation.reference (參考文獻) | 11. Farebrother, R. W. (1984), “Algorithm AS 204: The distribution of a positive linear combination of random variables,” Journal of the Royal Statistical Society, Series C (Applied Statistics), 33, 332-339. | zh_TW |
dc.relation.reference (參考文獻) | 12. Hawkins, D. M. (1991), “Multivariate quality control based on regression – adjusted variables,” Technometrics, 33, 61-75. | zh_TW |
dc.relation.reference (參考文獻) | 13. Hawkins, D. M. and Maboudou-Tchao, E. M. (2008), “Multivariate exponentially weighted moving covariance matrix,” Technometrics, 50, 155-166. | zh_TW |
dc.relation.reference (參考文獻) | 14. Hawkins, D. M., Qiu, P. and Kang, C. W. (2003), “The changepoint model for statistical process control,” Journal of Quality Technology, 35 (4), 355-366. | zh_TW |
dc.relation.reference (參考文獻) | 15. Hawkins, D. M. and Zamba K. D. (2005), “Statistical process control for shifts in mean or variance using a changepoint formulation,” Technometrics, 47 (2), 164-173. | zh_TW |
dc.relation.reference (參考文獻) | 16. Healy, J. D. (1987), “A note on multivariate quality CUSUM procedures,” Technometrics, 29, 409-412. | zh_TW |
dc.relation.reference (參考文獻) | 17. Imhof, J. P. (1961), “Computing the distribution of quadratic forms in normal variables,” Biometrika, 48(3 and 4), 419-426. | zh_TW |
dc.relation.reference (參考文獻) | 18. Jackson, J. E. (1959), “Quality control methods for several related variables,” Technometrics, 1, 359-377. | zh_TW |
dc.relation.reference (參考文獻) | 19. James, W. and Stein, C. (1961), “Estimation with quadratic loss,” Fourth Berkeley Simpslum, 361-379. | zh_TW |
dc.relation.reference (參考文獻) | 20. Johnson, R. A. and Wichern D. W. (1992), “Applied multivariate statistical analysis,” Englewood Cliffs, N.J. : Prentice Hall | zh_TW |
dc.relation.reference (參考文獻) | 21. Khoo, B. C. (2005), “A new bivariate control chart to monitor the multivariate process mean and variance simultaneously,” Quality Engineering, 17, 109-118. | zh_TW |
dc.relation.reference (參考文獻) | 22. Liu, H., Tang, Y., and Zhang, H. H. (2009), “Computational statistics and data analysis,” Computational Statistics and Data Analysis, 53, 853-856. | zh_TW |
dc.relation.reference (參考文獻) | 23. Liu, R. Y. (1995), “Control charts for multivariate process,” J. Amer. Statist. Assoc, 90, 1380-1387. | zh_TW |
dc.relation.reference (參考文獻) | 24. Lowry, C. A., Woodall, W. H., Champ, C. W. and Rigdon, S. E. (1992), “A multivariate exponentially weighted moving average control chart,” Technometrics, 34, 46-53. | zh_TW |
dc.relation.reference (參考文獻) | 25. Mahmoud, M. A. and Zahran, A. R. (2011), “ A multivariate adaptive exponentially weighted moving average control chart,” Communications in Statistics – Theory and Methods, 39 (4), 606-625. | zh_TW |
dc.relation.reference (參考文獻) | 26. Mohebbi, C. and Hayre, L. (1989), “Multivariate control charts: a loss function approach,” Sequential Analysis, 8, 253-268. | zh_TW |
dc.relation.reference (參考文獻) | 27. Moschopoulous, P. G. and Canada, W. B. (1984), “The distribution function of a linear combination of chi-square,” Comp. & Maths, with Appls., 10, 383-386. | zh_TW |
dc.relation.reference (參考文獻) | 28. Montgomery, D. C. (2001), Introduction to statistical quality control, 4th Ed, John Wiley & Sons, New York, NY. | zh_TW |
dc.relation.reference (參考文獻) | 29. Patnaik, P. B. (1949), “The non-central - and F-distribution and their applications,” Biometrika, 36, 202-232. | zh_TW |
dc.relation.reference (參考文獻) | 30. Pearson, E. S. (1959), “Note on an approximation to the distribution of non-central ,” Biometrika, 46, 364-365. | zh_TW |
dc.relation.reference (參考文獻) | 31. Pignatiello, J. J. and Runger, G. C. (1990), “Comparisons of multivariate CUSUM charts,” J. Qual. Technol, 22, 173-186. | zh_TW |
dc.relation.reference (參考文獻) | 32. Qiu, P. and Hawkins, D. M. (2001), “A rank-based multivariate CUSUM procedure,” Technometrics, 43, 120-132. | zh_TW |
dc.relation.reference (參考文獻) | 33. Reynolds, M. R. and Cho, G. Y. (2006), “Multivariate control charts for monitoring the mean vector and covariance matrix,” J. Qual. Technol, 38(3), 230-253. | zh_TW |
dc.relation.reference (參考文獻) | 34. Spiring, F. A. and Cheng, S. W. (1998), “An alternate variables control chart: the univariate and multivariate case,” Statistica Sinica, 8, 273-287. | zh_TW |
dc.relation.reference (參考文獻) | 35. Stoumbos, Z. G., Reynolds, M. R., Ryan, T. P. and Woodall, W. H. (2000). “The state of statistical process control as we proceed into the 21st century,” J. Amer. Statist. Assoc, 95, 992-998. | zh_TW |
dc.relation.reference (參考文獻) | 36. Tang, P. F. and Barnett, N. S. (1996a), “Dispersion control for multivariate processes,” Aust. N. J. Stat, 38, 235-251. | zh_TW |
dc.relation.reference (參考文獻) | 37. Tang, P. F. and Barnett, N. S. (1996b), “Dispersion control for multivariate processes-some comparisons,” Aust. N. J. Stat, 31, 376-386. | zh_TW |
dc.relation.reference (參考文獻) | 38. Tsui, K. and Woodall, W. H. (1993), “Multivariate control charts based on loss functions,” Sequential Analysis, 12(1), 79-92. | zh_TW |
dc.relation.reference (參考文獻) | 39. Woodall, W. H. and Montgomery D. C. (1999), “Research issues and ideas in statistical process control,” J. Qual. Technol, 31, 376-386. | zh_TW |
dc.relation.reference (參考文獻) | 40. Woodall, W. H. and Nucube, M. M. (1985), “Multivariate CUSUM quality control procedures,” Technometrics, 27, 285-292. | zh_TW |
dc.relation.reference (參考文獻) | 41. Xie, H. (1999). “Contribution to qualimetry,” Ph.D. thesis, University of Manitoba, Winnipeg, Canada. | zh_TW |
dc.relation.reference (參考文獻) | 42. Yang, S. F., Lin, K. J. and Hung, T.C. (2009), “ Improvement in consistency of the metallic film thickness of computer connectors,” Journal of Process Control, 19, 498-505. | zh_TW |
dc.relation.reference (參考文獻) | 43. Yeh, A. B., Huwang, L. and Wu, Y. F. (2004), “A likelihood-ratio-based EWMA control chart for monitoring variability of multivariate normal processes,” IIE Trans, 36, 865-879. | zh_TW |
dc.relation.reference (參考文獻) | 44. Yeh, A. B., Huwang, L. and Wu, C. W. (2005), “A multivariate EWMA control chart for monitoring process variability with individual observations,” IIE Trans, 37, 1023-1035. | zh_TW |
dc.relation.reference (參考文獻) | 45. Yeh, A. B. and Lin, D. K. (2002), “A new variables control chart for simultaneously monitoring multivariate process mean and variability,” Int. J. Reliab. Qual. Saf. Eng, 9 (1). 41-59. | zh_TW |
dc.relation.reference (參考文獻) | 46. Yeh, A. B., Lin, K. J., Zhou, H. H. and Venkataramani, C. (2003), “ A multivariate exponentially weighted moving average control chart for monitoring process variability,” Journal of Applied Statistics, 30(5), 507-536. | zh_TW |
dc.relation.reference (參考文獻) | 47. Zamba, K. D. and Hawkinsm D. M. (2006), “A multivariate change-point model for statistical process control,” Technometrics, 48 (4), 539-548. | zh_TW |
dc.relation.reference (參考文獻) | 48. Zhang, J., Li, Z. and Wang, Z. (2010), “A multivariate control chart for simultaneously monitoring process mean and variability,” Computational Statisitcs and Data Analysis, 54, 2244-2252. | zh_TW |