dc.contributor.advisor | 符聖珍 | zh_TW |
dc.contributor.author (Authors) | 陳家盛 | zh_TW |
dc.contributor.author (Authors) | Chen, Chia Sheng | en_US |
dc.creator (作者) | 陳家盛 | zh_TW |
dc.creator (作者) | Chen, Chia Sheng | en_US |
dc.date (日期) | 2010 | en_US |
dc.date.accessioned | 5-Oct-2011 14:39:37 (UTC+8) | - |
dc.date.available | 5-Oct-2011 14:39:37 (UTC+8) | - |
dc.date.issued (上傳時間) | 5-Oct-2011 14:39:37 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0097751014 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/51309 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學研究所 | zh_TW |
dc.description (描述) | 97751014 | zh_TW |
dc.description (描述) | 99 | zh_TW |
dc.description.abstract (摘要) | 在這篇論文裡,我們要討論的是在多維度的時間刻度下橢圓型動態算子和拋物型動態算子的極大值定理,並藉此得到一些應用。事實上,我們是將微分方程及差分方程裡的極大值定理推廣至所謂的動態方程中。 | zh_TW |
dc.description.abstract (摘要) | In this thesis, we establish the maximum principles for the elliptic dynamic operators and parabolic dynamic operators on multi-dimensional time scales, and apply it to obtain some applications. Indeed, we extend the maximum principles on differential equations and difference equations to the so-called dynamic equations. | en_US |
dc.description.tableofcontents | Contents謝辭 iAbstract iii中文摘要 iv1 Introduction 12 Preliminary 23 Maximum principles for the elliptic dynamic operators 84 Maximum principles for the parabolic dynamic operators 13References 21 | zh_TW |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0097751014 | en_US |
dc.subject (關鍵詞) | 時間刻度 | zh_TW |
dc.subject (關鍵詞) | 動態算子 | zh_TW |
dc.subject (關鍵詞) | 極大值定理 | zh_TW |
dc.title (題名) | 時間刻度下偏動態算子的極大值定理 | zh_TW |
dc.title (題名) | The maximum principles for the partial dynamic operators on time scales | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | [1]M. Protter, H. Weinberger,Maximum Principles in | zh_TW |
dc.relation.reference (參考文獻) | Differential Equations,Prentice-Hall, New Jersey, (1967). | zh_TW |
dc.relation.reference (參考文獻) | [2]H. Kuo, N. Trudinger,On the discrete maximum principle | zh_TW |
dc.relation.reference (參考文獻) | for parabolic difference operators,Math. Model. Numer. | zh_TW |
dc.relation.reference (參考文獻) | Anal. 27 (1993) 719-737. | zh_TW |
dc.relation.reference (參考文獻) | [3]G. David, N.S. Trudinger,Elliptic partial differential | zh_TW |
dc.relation.reference (參考文獻) | equations of second order,Berlin, New York: Springer- | zh_TW |
dc.relation.reference (參考文獻) | Verlag, (1977). | zh_TW |
dc.relation.reference (參考文獻) | [4]P. Stehlik, B. Thompson,Maximum principles for second | zh_TW |
dc.relation.reference (參考文獻) | order dynamic equations on time scales,J. Math. Anal. | zh_TW |
dc.relation.reference (參考文獻) | Appl. 331 (2007) 913-926. | zh_TW |
dc.relation.reference (參考文獻) | [5]P. Stehlik,Maximum principles for elliptic dynamic | zh_TW |
dc.relation.reference (參考文獻) | equations,Mathematical and Computer Modelling 51 (2010) | zh_TW |
dc.relation.reference (參考文獻) | 1193-1201. | zh_TW |
dc.relation.reference (參考文獻) | [6]R.P. Agarwal and M. Bohner,Basic calculus on time scales | zh_TW |
dc.relation.reference (參考文獻) | and some of its applications,Results Math. 35 (1999) 3- | zh_TW |
dc.relation.reference (參考文獻) | 22. | zh_TW |
dc.relation.reference (參考文獻) | [7]M. Bohner and A. Peterson,Dynamic Equation on Time | zh_TW |
dc.relation.reference (參考文獻) | Scales, An Introduction with Application,Birkhauser, | zh_TW |
dc.relation.reference (參考文獻) | Boston (2001). | zh_TW |
dc.relation.reference (參考文獻) | [8]M. Bohner and A. Peterson,Advances in Dynamic Equation | zh_TW |
dc.relation.reference (參考文獻) | on Time Scales,Birkhauser, Boston (2003). | zh_TW |
dc.relation.reference (參考文獻) | [9]B. Jackson,Partial dynamic equations on time scales,J. | zh_TW |
dc.relation.reference (參考文獻) | Comput. Appl. Math. 186 (2006) 391-415. | zh_TW |