Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 時間刻度下偏動態算子的極大值定理
The maximum principles for the partial dynamic operators on time scales
作者 陳家盛
Chen, Chia Sheng
貢獻者 符聖珍
陳家盛
Chen, Chia Sheng
關鍵詞 時間刻度
動態算子
極大值定理
日期 2010
上傳時間 5-Oct-2011 14:39:37 (UTC+8)
摘要 在這篇論文裡,我們要討論的是在多維度的時間刻度下橢圓型動態算子和拋物型動態算子的極大值定理,並藉此得到一些應用。事實上,我們是將微分方程及差分方程裡的極大值定理推廣至所謂的動態方程中。
In this thesis, we establish the maximum principles for the elliptic dynamic operators and parabolic dynamic operators on multi-dimensional time scales, and apply it to obtain some applications. Indeed, we extend the maximum principles on differential equations and difference equations to the so-called dynamic equations.
參考文獻 [1]M. Protter, H. Weinberger,Maximum Principles in
Differential Equations,Prentice-Hall, New Jersey, (1967).
[2]H. Kuo, N. Trudinger,On the discrete maximum principle
for parabolic difference operators,Math. Model. Numer.
Anal. 27 (1993) 719-737.
[3]G. David, N.S. Trudinger,Elliptic partial differential
equations of second order,Berlin, New York: Springer-
Verlag, (1977).
[4]P. Stehlik, B. Thompson,Maximum principles for second
order dynamic equations on time scales,J. Math. Anal.
Appl. 331 (2007) 913-926.
[5]P. Stehlik,Maximum principles for elliptic dynamic
equations,Mathematical and Computer Modelling 51 (2010)
1193-1201.
[6]R.P. Agarwal and M. Bohner,Basic calculus on time scales
and some of its applications,Results Math. 35 (1999) 3-
22.
[7]M. Bohner and A. Peterson,Dynamic Equation on Time
Scales, An Introduction with Application,Birkhauser,
Boston (2001).
[8]M. Bohner and A. Peterson,Advances in Dynamic Equation
on Time Scales,Birkhauser, Boston (2003).
[9]B. Jackson,Partial dynamic equations on time scales,J.
Comput. Appl. Math. 186 (2006) 391-415.
描述 碩士
國立政治大學
應用數學研究所
97751014
99
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0097751014
資料類型 thesis
dc.contributor.advisor 符聖珍zh_TW
dc.contributor.author (Authors) 陳家盛zh_TW
dc.contributor.author (Authors) Chen, Chia Shengen_US
dc.creator (作者) 陳家盛zh_TW
dc.creator (作者) Chen, Chia Shengen_US
dc.date (日期) 2010en_US
dc.date.accessioned 5-Oct-2011 14:39:37 (UTC+8)-
dc.date.available 5-Oct-2011 14:39:37 (UTC+8)-
dc.date.issued (上傳時間) 5-Oct-2011 14:39:37 (UTC+8)-
dc.identifier (Other Identifiers) G0097751014en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/51309-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 97751014zh_TW
dc.description (描述) 99zh_TW
dc.description.abstract (摘要) 在這篇論文裡,我們要討論的是在多維度的時間刻度下橢圓型動態算子和拋物型動態算子的極大值定理,並藉此得到一些應用。事實上,我們是將微分方程及差分方程裡的極大值定理推廣至所謂的動態方程中。zh_TW
dc.description.abstract (摘要) In this thesis, we establish the maximum principles for the elliptic dynamic operators and parabolic dynamic operators on multi-dimensional time scales, and apply it to obtain some applications. Indeed, we extend the maximum principles on differential equations and difference equations to the so-called dynamic equations.en_US
dc.description.tableofcontents Contents
謝辭 i
Abstract iii
中文摘要 iv
1 Introduction 1
2 Preliminary 2
3 Maximum principles for the elliptic dynamic operators 8
4 Maximum principles for the parabolic dynamic operators 13
References 21
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0097751014en_US
dc.subject (關鍵詞) 時間刻度zh_TW
dc.subject (關鍵詞) 動態算子zh_TW
dc.subject (關鍵詞) 極大值定理zh_TW
dc.title (題名) 時間刻度下偏動態算子的極大值定理zh_TW
dc.title (題名) The maximum principles for the partial dynamic operators on time scalesen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1]M. Protter, H. Weinberger,Maximum Principles inzh_TW
dc.relation.reference (參考文獻) Differential Equations,Prentice-Hall, New Jersey, (1967).zh_TW
dc.relation.reference (參考文獻) [2]H. Kuo, N. Trudinger,On the discrete maximum principlezh_TW
dc.relation.reference (參考文獻) for parabolic difference operators,Math. Model. Numer.zh_TW
dc.relation.reference (參考文獻) Anal. 27 (1993) 719-737.zh_TW
dc.relation.reference (參考文獻) [3]G. David, N.S. Trudinger,Elliptic partial differentialzh_TW
dc.relation.reference (參考文獻) equations of second order,Berlin, New York: Springer-zh_TW
dc.relation.reference (參考文獻) Verlag, (1977).zh_TW
dc.relation.reference (參考文獻) [4]P. Stehlik, B. Thompson,Maximum principles for secondzh_TW
dc.relation.reference (參考文獻) order dynamic equations on time scales,J. Math. Anal.zh_TW
dc.relation.reference (參考文獻) Appl. 331 (2007) 913-926.zh_TW
dc.relation.reference (參考文獻) [5]P. Stehlik,Maximum principles for elliptic dynamiczh_TW
dc.relation.reference (參考文獻) equations,Mathematical and Computer Modelling 51 (2010)zh_TW
dc.relation.reference (參考文獻) 1193-1201.zh_TW
dc.relation.reference (參考文獻) [6]R.P. Agarwal and M. Bohner,Basic calculus on time scaleszh_TW
dc.relation.reference (參考文獻) and some of its applications,Results Math. 35 (1999) 3-zh_TW
dc.relation.reference (參考文獻) 22.zh_TW
dc.relation.reference (參考文獻) [7]M. Bohner and A. Peterson,Dynamic Equation on Timezh_TW
dc.relation.reference (參考文獻) Scales, An Introduction with Application,Birkhauser,zh_TW
dc.relation.reference (參考文獻) Boston (2001).zh_TW
dc.relation.reference (參考文獻) [8]M. Bohner and A. Peterson,Advances in Dynamic Equationzh_TW
dc.relation.reference (參考文獻) on Time Scales,Birkhauser, Boston (2003).zh_TW
dc.relation.reference (參考文獻) [9]B. Jackson,Partial dynamic equations on time scales,J.zh_TW
dc.relation.reference (參考文獻) Comput. Appl. Math. 186 (2006) 391-415.zh_TW