dc.contributor.advisor | 陸行 | zh_TW |
dc.contributor.advisor | Luh, Hsing | en_US |
dc.contributor.author (Authors) | 顏源亨 | zh_TW |
dc.contributor.author (Authors) | Yen, Yuan Heng | en_US |
dc.creator (作者) | 顏源亨 | zh_TW |
dc.creator (作者) | Yen, Yuan Heng | en_US |
dc.date (日期) | 2010 | en_US |
dc.date.accessioned | 5-Oct-2011 14:39:41 (UTC+8) | - |
dc.date.available | 5-Oct-2011 14:39:41 (UTC+8) | - |
dc.date.issued (上傳時間) | 5-Oct-2011 14:39:41 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0097972004 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/51313 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學系數學教學碩士在職專班 | zh_TW |
dc.description (描述) | 97972004 | zh_TW |
dc.description (描述) | 99 | zh_TW |
dc.description.abstract (摘要) | 穩定狀態機率是讓我們了解各種排隊網路性能的基礎。在擬生死過程(Quasi-Birth-and-Death) Phase-type 分配中求得穩定狀態機率,通常是依賴排隊網路的結構。在這篇論文中,我們提出了一種計算方法-LU分解,可以求得在排隊網路中有多台服務器的穩定狀態機率。此計算方法提供了一種通用的方法,使得複雜的大矩陣變成小矩陣,並減低計算的複雜性。當需要計算一個複雜的大矩陣,這個成果變得更加重要。文末,我們提到了離開時間間隔,並用兩種方法 (Matlab 和 Promodel) 去計算期望值和變異數,我們發現兩種方法算出的數據相近,接著計算離開顧客的時間間隔相關係數。最後,我們提供數值實驗以計算不同服務器個數產生的離去過程和相關係數,用來說明我們的方法。 | zh_TW |
dc.description.abstract (摘要) | Stationary probabilities are fundamental in response to various measures of performance in queueing networks. Solving stationary probabilities in Quasi-Birth-and-Death(QBD) with phase-type distribution normally are dependent on the structure of the queueing network. In this thesis, a new computing scheme is developed for attaining stationary probabilities in queueing networks with multiple servers. This scheme provides a general approach of consindering thecomplexity of computing algorithm. The result becomes moresignificant when a large matrix is involved in computation. After determining the stationary probability, we study the departure process and the moments of inter-departure times. We can obtain the moment of inter-departure times. We compute the moments of inter-departure times and the variance by applying two numerical methods (Matlab and Promodel). The lag-k correlation of inter-departure times is also introduced in the thesis. The proposed approach is proved theoretically and verifieded with illustrative examples. | en_US |
dc.description.tableofcontents | 1 Introdution 12 Problem Definitions 4 2.1 Markovian arrival process with phase-type distributions 4 2.2 A Phase-type queueing model 73 Matrix-Geometric Solutions 12 3.1 State balance equations 12 3.2 An algorithm for matrix decomposition 144 Inter-departure times 23 4.1 Departure process 23 4.2 Moments of inter-departure times 25 4.3 Lag correlations between successive departures 255 Numerical Examples 27 5.1 Queueing models with two servers 27 5.2 Queueing models with three servers 37 5.3 Queueing models with more than twenty servers 46 5.4 Numerical experiments with more than forty servers 556 Conclusion 59 | zh_TW |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0097972004 | en_US |
dc.subject (關鍵詞) | 階段形機率分配 | zh_TW |
dc.subject (關鍵詞) | 多重服務器 | zh_TW |
dc.subject (關鍵詞) | 穩定狀態機率 | zh_TW |
dc.subject (關鍵詞) | Phase-type distribution | en_US |
dc.subject (關鍵詞) | multiple servers | en_US |
dc.subject (關鍵詞) | stationary probability | en_US |
dc.title (題名) | 以矩陣分解法計算特別階段形機率分配並有多人服務之排隊模型 | zh_TW |
dc.title (題名) | A phase-type queueing model with multiple servers by matrix decomposition approaches | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | 1.Bitran, G.R., Dasu, S., Analysis of the Ph/Ph/1 queue. | zh_TW |
dc.relation.reference (參考文獻) | Operations Research, Vol. 42, No. 1, pp.158--174, 1994. | zh_TW |
dc.relation.reference (參考文獻) | 2.Bodrog, L., Horvath, A., Telek, M.,Moment | zh_TW |
dc.relation.reference (參考文獻) | characterization of matrix exponential and Markovian | zh_TW |
dc.relation.reference (參考文獻) | arrival processes. Annals of operations Reseach, to | zh_TW |
dc.relation.reference (參考文獻) | appear, 2008. | zh_TW |
dc.relation.reference (參考文獻) | 3.Chuan, Y.W., Luh, H., Solving a two-node closed queueing | zh_TW |
dc.relation.reference (參考文獻) | network by a new approach, International Journal of | zh_TW |
dc.relation.reference (參考文獻) | Information and Management Sciences, Vol. 16, No. 4, pp. | zh_TW |
dc.relation.reference (參考文獻) | 49--62, 2004. | zh_TW |
dc.relation.reference (參考文獻) | 4.Curry, G.L., Gautam, N., Characterizing the departure | zh_TW |
dc.relation.reference (參考文獻) | process from a two server Markovian queue: A non-renewal | zh_TW |
dc.relation.reference (參考文獻) | approach, Proceedings of the 2008 Winter Simulation | zh_TW |
dc.relation.reference (參考文獻) | Conference, pp. 2075--2082, 2008. | zh_TW |
dc.relation.reference (參考文獻) | 5.El-Rayes, A., Kwiatkowska, M., Norman, G., Solving | zh_TW |
dc.relation.reference (參考文獻) | infinite stochastic process algebra model through martix- | zh_TW |
dc.relation.reference (參考文獻) | geometric methods, Proceedings of 7th Process Algebras | zh_TW |
dc.relation.reference (參考文獻) | and Performance Modelling Workshop (PAPM99), J. Hillston | zh_TW |
dc.relation.reference (參考文獻) | and M. Silva (Eds.), pp. 41--62, University of Zaragoza, | zh_TW |
dc.relation.reference (參考文獻) | 1999. | zh_TW |
dc.relation.reference (參考文獻) | 6.Gene H. Golub, Charles F. Van Loan, Matrix Computations, | zh_TW |
dc.relation.reference (參考文獻) | 3rd Edition, The Johns Hopkins University Press, 1996. | zh_TW |
dc.relation.reference (參考文獻) | 7.Latouche, G., Ramaswami, V., Introduction to Matrix | zh_TW |
dc.relation.reference (參考文獻) | Analytic Methods in Stochastic Modeling, ASA-SIAM Series | zh_TW |
dc.relation.reference (參考文獻) | on Statistics and Applied Probability (SIAM), Society for | zh_TW |
dc.relation.reference (參考文獻) | Industrial Mathematics, Philadelphia, PA, 2000. | zh_TW |
dc.relation.reference (參考文獻) | 8.Neuts, M.F., Matrix-Geometric Solutions in Stochastic | zh_TW |
dc.relation.reference (參考文獻) | Models, The John Hopkins University Press, 1981. | zh_TW |
dc.relation.reference (參考文獻) | 9.Roger, A.H., Charles, R.J., Matrix analysis, 4th | zh_TW |
dc.relation.reference (參考文獻) | Edition,The Press Syndicate of the University of | zh_TW |
dc.relation.reference (參考文獻) | Cambrige, 1990. | zh_TW |
dc.relation.reference (參考文獻) | 10.Sikdar, K., Gupta, U.C., The queue length distributions | zh_TW |
dc.relation.reference (參考文獻) | in the finite buffer bulk-service $MAP/G/1$ queue with | zh_TW |
dc.relation.reference (參考文獻) | multple vacations, Sociedad de Estadistica e | zh_TW |
dc.relation.reference (參考文獻) | Investigacion Operativa, Vol. 13, No.1, pp. 75--103, 2005. | zh_TW |
dc.relation.reference (參考文獻) | 11.Telek, M., Horvath, G., A minimal representation of | zh_TW |
dc.relation.reference (參考文獻) | Markov arrival processes and a moments matching method. | zh_TW |
dc.relation.reference (參考文獻) | Performance Evaluation, Vol. 64, pp. 1153--1168, 2007. | zh_TW |
dc.relation.reference (參考文獻) | 12.Whitt, W. The queueing network analyzer, The Bell system | zh_TW |
dc.relation.reference (參考文獻) | Technical Journal, Vol. 62, No. 9, pp. 2779--2814, 1983. | zh_TW |
dc.relation.reference (參考文獻) | 13.The MathWorks Company, | zh_TW |
dc.relation.reference (參考文獻) | MATLAB The Language of Technical Computing: Using | zh_TW |
dc.relation.reference (參考文獻) | MALTAB, Version 6, 2002. | zh_TW |
dc.relation.reference (參考文獻) | 14.Promodel Corp., Promodel User Guide, Promodel Corp., | zh_TW |
dc.relation.reference (參考文獻) | 2001. | zh_TW |