學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 準單晶碲化鉍奈米線和薄膜的熱電性質研究
Thermoelectric properties in crystalline Bi2Te3 nanowires and thin films
作者 陳尚謙
Chen, Shang Chien
貢獻者 陳洋元
Chen, Yang Yuan
陳尚謙
Chen, Shang Chien
關鍵詞 碲化鉍
奈米線
薄膜
Bi2Te3
nanowires
日期 2010
上傳時間 5-Oct-2011 14:44:22 (UTC+8)
摘要 碲化鉍((Bi2Te3)是熱電材料轉換效率較高的元件,其優質係數ZT值約為1。希望藉由奈米的量子效應提升它的熱電性質,我們製作一系列低維度的奈米線和薄膜來進行研究。本實驗使用的碲化鉍奈米線乃利用薄膜樣品與基板的熱膨脹係數不同,經由熱處理在碲化鉍的薄膜上長出奈米線。由掃描式電子式顯微鏡和穿隧式電子顯微鏡可以觀察到菱形晶胞(Rhombohedral unit cell)結構的碲化鉍奈米線沿著(110)方向生長,直徑約150-330 nm長度約20-30 μm。將碲化鉍奈米線轉移到矽晶片上,運用半導體製程中的熱蒸鍍(Evaporator)以及電子束曝光系統(E-Beam writer)製作電極、熱電偶和加熱器來量測席貝克(Seebeck) 係數、電傳導率和熱傳導率。最後成功的製作與量測出p型(107 μV/k) 和n型(-52.8 μV/k) 的奈米線,雖然其席貝克係數小於塊材,但奈米線的熱傳導率低於塊材兩倍以上,研究發現最好的碲化鉍奈米線的熱電優值(ZT value) 可達1.18略大於塊材。
碲化鉍薄膜是以分子束磊晶 (Molecular Beam epitaxy)成長,分子束磊晶是在高真空下以物理的方式將高純度的材料4N (99.99%)將原子傳遞至基板上進行沉積反應形成,鍍率可低於0.1 nm/秒以下,因此可以製備出高品質的薄膜樣品,製造出各種不同比例的Bi-Te的薄膜。藉由X光繞射儀可以得知薄膜是菱形晶胞結構並且延著(0,0,l)的平面所成長。並用熱電偶成功的量測出薄膜的席貝克係數在室溫下座落於80-80 μV/k,電阻率5-30 μΩ-m,計算出功率因子(power factor)最高可達2000 μW/mK^2,與塊材相比低於一半,但是薄膜的熱傳導率同樣也低於塊材兩倍以上。最後得到最佳的碲化鉍薄膜的熱電優值(ZT value) 可達到1.01等同於塊材。
Bismuth telluride (Bi2Te3) is the thermoelectric material used for high-efficiency energy conversion. The figure of merit ZT of bulk is around 1. To study the promising positive effects on the thermoelectric properties, low dimensional nanowires and thin films of Bi2Te3 were prepared and measurements were performed. Here the method applied to nanowires growth on Bi2Te3 thin films is the mismatch of thermal expansion between substrate and thin films. By annealing at 300-350℃ for a week, the nanowires were grown on the thin films. Rhombohedral structure of Bi2Te3 nanowires with diameter ~150-330 nm and length ~20-30 μm grew along (110) direction was confirmed by Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction Pattern (SAED). To measure the Seebeck coefficient, electrical conductivity and thermal conductivity, Bi2Te3 nanowires were moved to silicon chips. Electrodes, thermometers and heaters were fabricated through thermal evaporation and E-Beam lithography processes. We successfully grew p-type(107 μV/k) and n-type(-52.8 μV/k) nanowires. Although Seebeck coefficient of nanowires is smaller than that of bulks, its thermal conductivity is less than half of that of bulks. The best ZT value of nanowires we obtained was 1.18, which was slightly larger than that of the bulks.
Molecular beam epitaxy (MBE) is a technique to grow Bi2Te3 thin films under extremely high vacuum, which is undergoing a physical vapor deposition to atomically grow thin films layer by layer. Due to the deposition rate is lower than 0.1 nm/s, we can deposit the high-quality thin films and adjust the ratio between bismuth and telluride. Rhombohedral structure of thin films grew along (110) plane was confirmed by X-Ray Diffraction (XRD). The Seebeck coefficient (80-80 μV/k) and electrical resistivity (5-30 μΩ-m) in room temperature are obtained by the thermocouples. The highest power factor can reach to 2000 μW/mK^2. While the power factor of thin films is about half of bulk ‘s value, the thermal conductivity of thin films is also half of that of bulks. The best ZT value of thin films obtained was nearly as same as that of bulks, 1.01.
參考文獻 參考文獻
[1] C. M. Lin, T. L. Hung, Y. H. Huang, K. T. Wu, M. T. Tang, C. H. Lee,
C. T. Chen and Y. Y. Chen, Phys. Rev. B. 75,125426 (2007)
[2]Cheng-Lung Chen et al. J. Phys. Chem. C 2010, 114, 3385 (2010)
[3]熊德智 ,硒化鐵奈米微粒之超導及碲化鉍奈米線之熱電物性研究,中央大學
,碩士論文,2010
[4]Jianhua Zhou et al. Appl. Phys. Lett. 87, 133109 (2005) along 〈1120〉direction
[5] H Jitsukawa,Y Nagasaka Development of measurement technique to evaluate thermal conductivity of thermoelectric Bi2Te3 submicron thin films by photothermal radiometry 1School of Integrated Design Engineering, Keio University
[6]J.Ham,W.Shim,D.H.Kim,S.Lee,J.Roh,S.W.Sohn,K.H.Oh,P.W.Voorhees,and W. Lee, NANO LETTERS.9,No.8 2867 (2009)
[7] D. M. Rowe, CRC Handbook of Thermoelectric;
CRC Press: New York, 1995
[8] N. Peranio , O. Eibl, J. Nurnus J. Appl. Phys. 100, 114306 _2006_
描述 碩士
國立政治大學
應用物理研究所
98755009
99
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0098755009
資料類型 thesis
dc.contributor.advisor 陳洋元zh_TW
dc.contributor.advisor Chen, Yang Yuanen_US
dc.contributor.author (Authors) 陳尚謙zh_TW
dc.contributor.author (Authors) Chen, Shang Chienen_US
dc.creator (作者) 陳尚謙zh_TW
dc.creator (作者) Chen, Shang Chienen_US
dc.date (日期) 2010en_US
dc.date.accessioned 5-Oct-2011 14:44:22 (UTC+8)-
dc.date.available 5-Oct-2011 14:44:22 (UTC+8)-
dc.date.issued (上傳時間) 5-Oct-2011 14:44:22 (UTC+8)-
dc.identifier (Other Identifiers) G0098755009en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/51324-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用物理研究所zh_TW
dc.description (描述) 98755009zh_TW
dc.description (描述) 99zh_TW
dc.description.abstract (摘要) 碲化鉍((Bi2Te3)是熱電材料轉換效率較高的元件,其優質係數ZT值約為1。希望藉由奈米的量子效應提升它的熱電性質,我們製作一系列低維度的奈米線和薄膜來進行研究。本實驗使用的碲化鉍奈米線乃利用薄膜樣品與基板的熱膨脹係數不同,經由熱處理在碲化鉍的薄膜上長出奈米線。由掃描式電子式顯微鏡和穿隧式電子顯微鏡可以觀察到菱形晶胞(Rhombohedral unit cell)結構的碲化鉍奈米線沿著(110)方向生長,直徑約150-330 nm長度約20-30 μm。將碲化鉍奈米線轉移到矽晶片上,運用半導體製程中的熱蒸鍍(Evaporator)以及電子束曝光系統(E-Beam writer)製作電極、熱電偶和加熱器來量測席貝克(Seebeck) 係數、電傳導率和熱傳導率。最後成功的製作與量測出p型(107 μV/k) 和n型(-52.8 μV/k) 的奈米線,雖然其席貝克係數小於塊材,但奈米線的熱傳導率低於塊材兩倍以上,研究發現最好的碲化鉍奈米線的熱電優值(ZT value) 可達1.18略大於塊材。
碲化鉍薄膜是以分子束磊晶 (Molecular Beam epitaxy)成長,分子束磊晶是在高真空下以物理的方式將高純度的材料4N (99.99%)將原子傳遞至基板上進行沉積反應形成,鍍率可低於0.1 nm/秒以下,因此可以製備出高品質的薄膜樣品,製造出各種不同比例的Bi-Te的薄膜。藉由X光繞射儀可以得知薄膜是菱形晶胞結構並且延著(0,0,l)的平面所成長。並用熱電偶成功的量測出薄膜的席貝克係數在室溫下座落於80-80 μV/k,電阻率5-30 μΩ-m,計算出功率因子(power factor)最高可達2000 μW/mK^2,與塊材相比低於一半,但是薄膜的熱傳導率同樣也低於塊材兩倍以上。最後得到最佳的碲化鉍薄膜的熱電優值(ZT value) 可達到1.01等同於塊材。
zh_TW
dc.description.abstract (摘要) Bismuth telluride (Bi2Te3) is the thermoelectric material used for high-efficiency energy conversion. The figure of merit ZT of bulk is around 1. To study the promising positive effects on the thermoelectric properties, low dimensional nanowires and thin films of Bi2Te3 were prepared and measurements were performed. Here the method applied to nanowires growth on Bi2Te3 thin films is the mismatch of thermal expansion between substrate and thin films. By annealing at 300-350℃ for a week, the nanowires were grown on the thin films. Rhombohedral structure of Bi2Te3 nanowires with diameter ~150-330 nm and length ~20-30 μm grew along (110) direction was confirmed by Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction Pattern (SAED). To measure the Seebeck coefficient, electrical conductivity and thermal conductivity, Bi2Te3 nanowires were moved to silicon chips. Electrodes, thermometers and heaters were fabricated through thermal evaporation and E-Beam lithography processes. We successfully grew p-type(107 μV/k) and n-type(-52.8 μV/k) nanowires. Although Seebeck coefficient of nanowires is smaller than that of bulks, its thermal conductivity is less than half of that of bulks. The best ZT value of nanowires we obtained was 1.18, which was slightly larger than that of the bulks.
Molecular beam epitaxy (MBE) is a technique to grow Bi2Te3 thin films under extremely high vacuum, which is undergoing a physical vapor deposition to atomically grow thin films layer by layer. Due to the deposition rate is lower than 0.1 nm/s, we can deposit the high-quality thin films and adjust the ratio between bismuth and telluride. Rhombohedral structure of thin films grew along (110) plane was confirmed by X-Ray Diffraction (XRD). The Seebeck coefficient (80-80 μV/k) and electrical resistivity (5-30 μΩ-m) in room temperature are obtained by the thermocouples. The highest power factor can reach to 2000 μW/mK^2. While the power factor of thin films is about half of bulk ‘s value, the thermal conductivity of thin films is also half of that of bulks. The best ZT value of thin films obtained was nearly as same as that of bulks, 1.01.
en_US
dc.description.tableofcontents 摘要……………………………………………………………………………………I
Abstract………………………………………………………………………………II
目錄…………………………………………………………………………………..IV
圖目錄………………………………………………………………………………..VI
表目錄……………………………………………………………………………...VIII
第一章 導論
1-1 研究背景及重要性………………………………………………………………1
1-2 研究動機…………………………………………………………………………1
1-3碲化鉍(Bi2Te3)的性質……………………………………………………………2
1-4 P N 參雜控制…………………………………………………………………….3
第二章 熱電基本原理
2-1熱電原理介紹……………………………………………………………………..5
2-1-1. 席貝克效應(Seebeck effect)………………………………………………..5
2-1-2. 珀爾帖效應(Peltier effect)……………………………………………….....7
2-1-3. 湯姆生效應(Thomson effect)………………………………………………8
2-2. 熱電優值係數(Figure of Merit)………………………………………………..9
2-3. 熱電材料簡介、分類與應用………………………………………………….10
第三章Bi2Te3奈米線 的製作、量測及分析
3-1 Bi2Te3靶材的製作……………………………………………………………….13
3-2 Bi2Te3奈米線的製作…………………………………………………………….14
3-3 Bi2Te3奈米線的量測…………………………………….....................................19
3-3-1電阻量測…………………………………………………………………….19
3-3-2 Seebeck係數量測…………………………………………………….…….19
3-3-3熱傳導量測(Self-heating 3ω method)………………………………………19
第四章碲化鉍薄膜(Bi2Te3 thin films)的製作、量測
4-1分子束磊晶(Molecular beam epitaxy)法系統之原理……………...……………21
4-2分子束磊晶系統結構……………………………………………………………22
4-3 分子束磊晶成長Bi2Te3薄膜之步驟……………………………………..…….25
4-3-1蒸鍍源處理…………………………………………………………………25
4-3-2成長前基版處理步驟………………………………………………………26
4-3-3 Bi2Te3薄膜成長的步驟……………………………………………………26
4-4量測儀器…………………………………………………………………………27
4-5 Bi2Te3薄膜電阻量測、Seebeck係數量測………………………………………32
第五章碲化鉍奈米線和薄膜的數據分析與討論
5-1 Bi2Te3奈米線 TEM的分析…………………………………………………….33
5-2 Bi2Te3奈米線的數據分析……………………………………………………….36
5-3熱電優質(ZT value)估算……………………...…………………………………37
5-4結論………………………………………………………………………………38
5-5 Bi2Te3薄膜的數據分析…………………………………………………..……...39
5-6熱電優質(ZT value)估算……………..………………………………………….50
5-7結論………………………………………………………………………………51
參考資料……………………………………………………………………………..52
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0098755009en_US
dc.subject (關鍵詞) 碲化鉍zh_TW
dc.subject (關鍵詞) 奈米線zh_TW
dc.subject (關鍵詞) 薄膜zh_TW
dc.subject (關鍵詞) Bi2Te3en_US
dc.subject (關鍵詞) nanowiresen_US
dc.title (題名) 準單晶碲化鉍奈米線和薄膜的熱電性質研究zh_TW
dc.title (題名) Thermoelectric properties in crystalline Bi2Te3 nanowires and thin filmsen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 參考文獻zh_TW
dc.relation.reference (參考文獻) [1] C. M. Lin, T. L. Hung, Y. H. Huang, K. T. Wu, M. T. Tang, C. H. Lee,zh_TW
dc.relation.reference (參考文獻) C. T. Chen and Y. Y. Chen, Phys. Rev. B. 75,125426 (2007)zh_TW
dc.relation.reference (參考文獻) [2]Cheng-Lung Chen et al. J. Phys. Chem. C 2010, 114, 3385 (2010)zh_TW
dc.relation.reference (參考文獻) [3]熊德智 ,硒化鐵奈米微粒之超導及碲化鉍奈米線之熱電物性研究,中央大學zh_TW
dc.relation.reference (參考文獻) ,碩士論文,2010zh_TW
dc.relation.reference (參考文獻) [4]Jianhua Zhou et al. Appl. Phys. Lett. 87, 133109 (2005) along 〈1120〉directionzh_TW
dc.relation.reference (參考文獻) [5] H Jitsukawa,Y Nagasaka Development of measurement technique to evaluate thermal conductivity of thermoelectric Bi2Te3 submicron thin films by photothermal radiometry 1School of Integrated Design Engineering, Keio Universityzh_TW
dc.relation.reference (參考文獻) [6]J.Ham,W.Shim,D.H.Kim,S.Lee,J.Roh,S.W.Sohn,K.H.Oh,P.W.Voorhees,and W. Lee, NANO LETTERS.9,No.8 2867 (2009)zh_TW
dc.relation.reference (參考文獻) [7] D. M. Rowe, CRC Handbook of Thermoelectric;zh_TW
dc.relation.reference (參考文獻) CRC Press: New York, 1995zh_TW
dc.relation.reference (參考文獻) [8] N. Peranio , O. Eibl, J. Nurnus J. Appl. Phys. 100, 114306 _2006_zh_TW