Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 效用無差異價格於不完全市場下之應用
Utility indifference pricing in incomplete markets
作者 胡介國
Hu,Chieh Kuo
貢獻者 胡聯國
Hu,Len Kuo
胡介國
Hu,Chieh Kuo
關鍵詞 不完全市場
局部積率平賭
效用無差異定價
incomplete markets
local martingale
utility indifference pricing
日期 2009
上傳時間 11-Oct-2011 19:03:53 (UTC+8)
摘要 在不完全市場下,衍生性金融商品可利用上套利和下套利價格來訂出價格區間。我們運用效用無差異定價於此篇論文中,此定價方式為尋找一個初始交易價,會使在起始時交易商品和無交易商品於商品到期日之最大期望效用相等。利用主要的對偶結果,我們證明在指數效用函數下,效用無差異定價區間會比上套利和下套利定價區間小。
In incomplete markets, prices of a contingent claim can be obtained between the upper and lower hedging prices. In this thesis, we will use utility indifference pricing to nd an initial payment for which the maximal expected utility of trading the claim is indi erent to the maximal
expected utility of no trading. From the central duality result, we show that the gap between the seller`s and the buyer`s utility indi erence prices is always smaller than the gap between the upper and lower hedging prices under the exponential utility function.
參考文獻 [1] Delbaen, F., P. Grandits, T. Rheinlander, D. Samperi, M. Schweizer, and C. Stricker (2002): Exponential hedging and entropic penalties, Math. Finance 12, 99-123.
[2] Follmer, H., and A. Schied (2002): Convex Measures of Risk and Trading Constraints, Finance Stochast. 6, 429-447.
[3] Fritelli, M. (2002a): The minimal Entropy Martingale Measure and the Valuation Problem in Incomplete markets, Math. Finance 10, 39-52.
[4] Grandits, P., and T. Rheinlander (1999): On the Minimal Entropy Martingale Measure, Preprint, Technical University of Berlin, to appear in Annals
of Probability.
[5] Hodges, S. D., and A. Neuberger (1989): Optimal replication of contingent claims under transaction costs, Rev. Future Markets 8, 222-239.
[6] _Ilhan, A., M. Jonsson,and R. Sircar (2005): Optimal investment with derivative securities, Finance Stochast. 9, 585-595.
[7] Kabanov, Y. M., and C. Stricker (2002): On the optimal portfolio for the exponential utility maximization: remarks to the six-author paper, Math. Finance 12, 125-134.
[8] Kramkrov, D. O. (1996): Optimal decomposition of supermartingales and hedging of contingent claims in incomplete security markets. Probab. Theory
and Relat. Fields 105, 459-479.
[9] Kunita, H. (2004): Representation of Martingales with Jumps and Application to Mathematical Finance, Advanced Studies in Pure Mathematics, Math. Soc. Japan, Tokyo, 41, 209-232.
[10] ksendal, B.: Stochastic Di erential Equations: an introduction with applications, 6ed, Springer 2003.
[11] ksendal, B., and A. Sulem (2009): Risk indi erence pricing in jump di usion markets, Math. Finance 19, 619-637.
描述 碩士
國立政治大學
應用數學研究所
96751005
98
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0096751005
資料類型 thesis
dc.contributor.advisor 胡聯國zh_TW
dc.contributor.advisor Hu,Len Kuoen_US
dc.contributor.author (Authors) 胡介國zh_TW
dc.contributor.author (Authors) Hu,Chieh Kuoen_US
dc.creator (作者) 胡介國zh_TW
dc.creator (作者) Hu,Chieh Kuoen_US
dc.date (日期) 2009en_US
dc.date.accessioned 11-Oct-2011 19:03:53 (UTC+8)-
dc.date.available 11-Oct-2011 19:03:53 (UTC+8)-
dc.date.issued (上傳時間) 11-Oct-2011 19:03:53 (UTC+8)-
dc.identifier (Other Identifiers) G0096751005en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/51654-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 96751005zh_TW
dc.description (描述) 98zh_TW
dc.description.abstract (摘要) 在不完全市場下,衍生性金融商品可利用上套利和下套利價格來訂出價格區間。我們運用效用無差異定價於此篇論文中,此定價方式為尋找一個初始交易價,會使在起始時交易商品和無交易商品於商品到期日之最大期望效用相等。利用主要的對偶結果,我們證明在指數效用函數下,效用無差異定價區間會比上套利和下套利定價區間小。zh_TW
dc.description.abstract (摘要) In incomplete markets, prices of a contingent claim can be obtained between the upper and lower hedging prices. In this thesis, we will use utility indifference pricing to nd an initial payment for which the maximal expected utility of trading the claim is indi erent to the maximal
expected utility of no trading. From the central duality result, we show that the gap between the seller`s and the buyer`s utility indi erence prices is always smaller than the gap between the upper and lower hedging prices under the exponential utility function.
en_US
dc.description.tableofcontents 謝辭 i
Abstract ii
中文摘要 iii
Contents iv
1 Introduction 1
2 The Fundamental Financial Market Model 4
3 Superreplication and Subreplication 7
4 Utility Indi erence Pricing 11
5 Proof of the Central Duality Result 15
6 Conclusion 18
References 19
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0096751005en_US
dc.subject (關鍵詞) 不完全市場zh_TW
dc.subject (關鍵詞) 局部積率平賭zh_TW
dc.subject (關鍵詞) 效用無差異定價zh_TW
dc.subject (關鍵詞) incomplete marketsen_US
dc.subject (關鍵詞) local martingaleen_US
dc.subject (關鍵詞) utility indifference pricingen_US
dc.title (題名) 效用無差異價格於不完全市場下之應用zh_TW
dc.title (題名) Utility indifference pricing in incomplete marketsen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] Delbaen, F., P. Grandits, T. Rheinlander, D. Samperi, M. Schweizer, and C. Stricker (2002): Exponential hedging and entropic penalties, Math. Finance 12, 99-123.zh_TW
dc.relation.reference (參考文獻) [2] Follmer, H., and A. Schied (2002): Convex Measures of Risk and Trading Constraints, Finance Stochast. 6, 429-447.zh_TW
dc.relation.reference (參考文獻) [3] Fritelli, M. (2002a): The minimal Entropy Martingale Measure and the Valuation Problem in Incomplete markets, Math. Finance 10, 39-52.zh_TW
dc.relation.reference (參考文獻) [4] Grandits, P., and T. Rheinlander (1999): On the Minimal Entropy Martingale Measure, Preprint, Technical University of Berlin, to appear in Annalszh_TW
dc.relation.reference (參考文獻) of Probability.zh_TW
dc.relation.reference (參考文獻) [5] Hodges, S. D., and A. Neuberger (1989): Optimal replication of contingent claims under transaction costs, Rev. Future Markets 8, 222-239.zh_TW
dc.relation.reference (參考文獻) [6] _Ilhan, A., M. Jonsson,and R. Sircar (2005): Optimal investment with derivative securities, Finance Stochast. 9, 585-595.zh_TW
dc.relation.reference (參考文獻) [7] Kabanov, Y. M., and C. Stricker (2002): On the optimal portfolio for the exponential utility maximization: remarks to the six-author paper, Math. Finance 12, 125-134.zh_TW
dc.relation.reference (參考文獻) [8] Kramkrov, D. O. (1996): Optimal decomposition of supermartingales and hedging of contingent claims in incomplete security markets. Probab. Theoryzh_TW
dc.relation.reference (參考文獻) and Relat. Fields 105, 459-479.zh_TW
dc.relation.reference (參考文獻) [9] Kunita, H. (2004): Representation of Martingales with Jumps and Application to Mathematical Finance, Advanced Studies in Pure Mathematics, Math. Soc. Japan, Tokyo, 41, 209-232.zh_TW
dc.relation.reference (參考文獻) [10] ksendal, B.: Stochastic Di erential Equations: an introduction with applications, 6ed, Springer 2003.zh_TW
dc.relation.reference (參考文獻) [11] ksendal, B., and A. Sulem (2009): Risk indi erence pricing in jump di usion markets, Math. Finance 19, 619-637.zh_TW