Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 熱帶線性系統之研究
On tropical linear systems
作者 游竣博
You, Jiun Bo
貢獻者 蔡炎龍
Tsai, Yen Lung
游竣博
You, Jiun Bo
關鍵詞 熱帶線性系統
tropical linear system
日期 2011
上傳時間 17-Apr-2012 10:25:01 (UTC+8)
摘要 本篇論文主要在探討熱帶線性系統(tropical linear system) A x = b 與雙邊齊次熱帶線性系統(two-sided homogeneous tropical linear system) A x = B y 的求解方法。我們將明確的描述任何熱帶線性系統與雙邊齊次熱帶線性系統的解。

如同古典的論述, 當求解線性系統 A x = b 時, 我們首先會先找到對應的 ""齊次`` 系統 A x = 0 來求解。而對於雙邊齊次熱帶線性系統, 我們將利用勝序列的概念, 將雙邊齊次熱帶線性系統轉化為 k 組古典熱帶線性系統: 含等式系統 S: C[x^t -y^t 1]^t = 0 與不等式系統 T: D[x^t -y^t 1]^t <= 0 。除此之外, 利用相容性條件來減少 k 的數量。

過程中我們處理的 S, T 均為雙變量的系統, 係數分別為 1 與 -1, 對於 S 我們以高斯-喬登消去法(Gauss–Jordan elimination)處理。對於 T 我們將以類似高斯-喬登消去法的方式進行列運算, 因此我們定義次特殊矩陣(sub-special matrix), 而進行的過程我們稱之為次特殊化(sub–specialization)。

最後將以 MATLAB 作為工具來求解出這兩類的熱帶線性系統。
The thesis mainly discusses the methods of finding solutions of tropical linear systems A x = b and two-sided homogeneous tropical linear systems A x = B y. We are able to give explicit descriptions of all solutions of any tropical linear systems A x = b and two-sided homogeneous tropical linear systems A x = B y.

As the classical situations, when solving the linear systems of the form A x = b, we first find the solutions for the corresponding ""homogeneous`` case A x = 0. For two-sided homogeneous tropical linear systems A x = B y, we use the concept of win sequence to convert it into a finite number k of classical linear systems: either a system S: C[x^t -y^t 1]^t = 0 of equations or a system T: D[x^t -y^t 1]^t <= 0 of inequalities. Moreover, we used so called ""compatibility conditions`` to reduce the number of k.

The particular feature of both S and T is that each item (equation or inequality) is bivariate. It involves exactly two variables; one variable with coefficient 1, and the other one with -1. S is solved by Gauss-Jordon elimination. We explain how to solve T by a method similar to Gauss-Jordon elimination. To achieve this, we introduce the notion of sub–special matrix. The procedure applied to T is called sub–specialization.

Finally, we will use MATLAB to solve tropical linear systems of these two types.
參考文獻 [1] Fran{\\c{c}}ois Baccelli, Guy Cohen, Geert Jan Olsder, and Jean Pierre Quadrat. Synchronization and linearity-an algebra for discrete event systems, 1992. 1
[2] Diane Maclagan and Bernd Sturmfels. Introduction to tropical geometry, Nov 2009. 1
[3] Grigory Mikhalkin. Tropical geometry and its applications, May 2006. 1
[4] J{\\"{u}}rgen Richter-Gebert, Bernd Sturmfels, and Thorsten Theobald. First steps in tropical geometry, Dec 2003. 1
[5] David Speyer and Bernd Sturmfels. Tropical mathematics, Aug 2004. 1
[6] P. Butkovi{\\v{c}} and R.A. Cuninghame-Green. The equation A x = B y over (max, +). Theoretical Computer Science, 293(1):3-12, Feb 2003. 1, 3, 16, 24
[7] E. Lorenzo and M. J. de la Puente. An algorithm to describe the solution set of any tropical linear system A x = B x, jul 2010. 1, 3
[8] Stephen H. Friedberg, Arnold J. Insel, and Lawrence E. Spence. Linear algebra, Jul 2003. 3
[9] MathWorks. http://www.mathworks.com/products/matlab/. 27
[10] 張智星. Matlab 程式設計與應用, Sep 2000. 27
[11] David Fass. http://www.mathworks.com/matlabcentral/ leexchange/5475-cartprod-cartesian-product-of-multiple-sets, Jul 2004. 40
[12] David Fass. http://www.mathworks.com/matlabcentral/ leexchange/5476-ind2subvect-multiple-subscript-vector-from-linear-index, Jul 2004. 42
描述 碩士
國立政治大學
應用數學研究所
98751001
100
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0098751001
資料類型 thesis
dc.contributor.advisor 蔡炎龍zh_TW
dc.contributor.advisor Tsai, Yen Lungen_US
dc.contributor.author (Authors) 游竣博zh_TW
dc.contributor.author (Authors) You, Jiun Boen_US
dc.creator (作者) 游竣博zh_TW
dc.creator (作者) You, Jiun Boen_US
dc.date (日期) 2011en_US
dc.date.accessioned 17-Apr-2012 10:25:01 (UTC+8)-
dc.date.available 17-Apr-2012 10:25:01 (UTC+8)-
dc.date.issued (上傳時間) 17-Apr-2012 10:25:01 (UTC+8)-
dc.identifier (Other Identifiers) G0098751001en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/52849-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 98751001zh_TW
dc.description (描述) 100zh_TW
dc.description.abstract (摘要) 本篇論文主要在探討熱帶線性系統(tropical linear system) A x = b 與雙邊齊次熱帶線性系統(two-sided homogeneous tropical linear system) A x = B y 的求解方法。我們將明確的描述任何熱帶線性系統與雙邊齊次熱帶線性系統的解。

如同古典的論述, 當求解線性系統 A x = b 時, 我們首先會先找到對應的 ""齊次`` 系統 A x = 0 來求解。而對於雙邊齊次熱帶線性系統, 我們將利用勝序列的概念, 將雙邊齊次熱帶線性系統轉化為 k 組古典熱帶線性系統: 含等式系統 S: C[x^t -y^t 1]^t = 0 與不等式系統 T: D[x^t -y^t 1]^t <= 0 。除此之外, 利用相容性條件來減少 k 的數量。

過程中我們處理的 S, T 均為雙變量的系統, 係數分別為 1 與 -1, 對於 S 我們以高斯-喬登消去法(Gauss–Jordan elimination)處理。對於 T 我們將以類似高斯-喬登消去法的方式進行列運算, 因此我們定義次特殊矩陣(sub-special matrix), 而進行的過程我們稱之為次特殊化(sub–specialization)。

最後將以 MATLAB 作為工具來求解出這兩類的熱帶線性系統。
zh_TW
dc.description.abstract (摘要) The thesis mainly discusses the methods of finding solutions of tropical linear systems A x = b and two-sided homogeneous tropical linear systems A x = B y. We are able to give explicit descriptions of all solutions of any tropical linear systems A x = b and two-sided homogeneous tropical linear systems A x = B y.

As the classical situations, when solving the linear systems of the form A x = b, we first find the solutions for the corresponding ""homogeneous`` case A x = 0. For two-sided homogeneous tropical linear systems A x = B y, we use the concept of win sequence to convert it into a finite number k of classical linear systems: either a system S: C[x^t -y^t 1]^t = 0 of equations or a system T: D[x^t -y^t 1]^t <= 0 of inequalities. Moreover, we used so called ""compatibility conditions`` to reduce the number of k.

The particular feature of both S and T is that each item (equation or inequality) is bivariate. It involves exactly two variables; one variable with coefficient 1, and the other one with -1. S is solved by Gauss-Jordon elimination. We explain how to solve T by a method similar to Gauss-Jordon elimination. To achieve this, we introduce the notion of sub–special matrix. The procedure applied to T is called sub–specialization.

Finally, we will use MATLAB to solve tropical linear systems of these two types.
en_US
dc.description.tableofcontents Abstract ... i
中文摘要 ... ii
目錄 ... iii
第一章 緒論 ... 1
第二章 基本介紹 ... 4
第三章 熱帶線性系統 A x = b ... 10
第一節 問題求解 ... 10
第二節 演算法及例子 ... 12
第四章 雙邊齊次熱帶線性系統 A x = B y ... 15
第一節 問題求解 ... 15
第二節 演算法及例子 ... 23
第五章 結論 ... 27
附錄 ... 28
參考文獻 ... 49
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0098751001en_US
dc.subject (關鍵詞) 熱帶線性系統zh_TW
dc.subject (關鍵詞) tropical linear systemen_US
dc.title (題名) 熱帶線性系統之研究zh_TW
dc.title (題名) On tropical linear systemsen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] Fran{\\c{c}}ois Baccelli, Guy Cohen, Geert Jan Olsder, and Jean Pierre Quadrat. Synchronization and linearity-an algebra for discrete event systems, 1992. 1zh_TW
dc.relation.reference (參考文獻) [2] Diane Maclagan and Bernd Sturmfels. Introduction to tropical geometry, Nov 2009. 1zh_TW
dc.relation.reference (參考文獻) [3] Grigory Mikhalkin. Tropical geometry and its applications, May 2006. 1zh_TW
dc.relation.reference (參考文獻) [4] J{\\"{u}}rgen Richter-Gebert, Bernd Sturmfels, and Thorsten Theobald. First steps in tropical geometry, Dec 2003. 1zh_TW
dc.relation.reference (參考文獻) [5] David Speyer and Bernd Sturmfels. Tropical mathematics, Aug 2004. 1zh_TW
dc.relation.reference (參考文獻) [6] P. Butkovi{\\v{c}} and R.A. Cuninghame-Green. The equation A x = B y over (max, +). Theoretical Computer Science, 293(1):3-12, Feb 2003. 1, 3, 16, 24zh_TW
dc.relation.reference (參考文獻) [7] E. Lorenzo and M. J. de la Puente. An algorithm to describe the solution set of any tropical linear system A x = B x, jul 2010. 1, 3zh_TW
dc.relation.reference (參考文獻) [8] Stephen H. Friedberg, Arnold J. Insel, and Lawrence E. Spence. Linear algebra, Jul 2003. 3zh_TW
dc.relation.reference (參考文獻) [9] MathWorks. http://www.mathworks.com/products/matlab/. 27zh_TW
dc.relation.reference (參考文獻) [10] 張智星. Matlab 程式設計與應用, Sep 2000. 27zh_TW
dc.relation.reference (參考文獻) [11] David Fass. http://www.mathworks.com/matlabcentral/ leexchange/5475-cartprod-cartesian-product-of-multiple-sets, Jul 2004. 40zh_TW
dc.relation.reference (參考文獻) [12] David Fass. http://www.mathworks.com/matlabcentral/ leexchange/5476-ind2subvect-multiple-subscript-vector-from-linear-index, Jul 2004. 42zh_TW