Publications-NSC Projects
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 貝氏方法在網路評分資料之應用(II) 其他題名 Bayesian Method for Internet Rating Data 作者 翁久幸 貢獻者 國立政治大學統計學系
行政院國家科學委員會關鍵詞 統計;貝氏方法;網路評分資料 日期 2012 上傳時間 30-Aug-2012 09:59:40 (UTC+8) 摘要 網路提供給消費者大量資訊. 網路使用者在網路上對於各種產品,如電影,音樂,餐廳, 商 品等給予的評分,常常構成相當大的網路資料. 關於這類評分一分到五分或一分到十分 的資料,目前網路上常見的呈現方式是以各產品所獲得的平均評分以圖表表示(例如以 五個星號代表五分). 然而,因為沒有考慮到評分者與評分者之間的差異,這樣簡單的平 均分數可能不客觀公平. Ho and Quinn (2008) 提出一個貝氏模型並以MCMC方法估計其中參數,該模型有 納入評分者與評分者之間的差異. Ho and Quinn (2008)並且以網路資料舉例說明 他們方法比平均分數能夠更合理的解釋評分資料. 可是, 該二位作者於文章結尾也指出, 當資料量很大,甚至於當新資料進來而需要重新估計模型參數, 以MCMC方法來計算 於實際應用上是不可行的. 本研究計畫的目的就是提出一個有效可行的方法來解決這 個問題.
The internet has offered consumers with a vast amount of information. One growing area of such information is ratings by internet users on various kinds of products such as movies, music, restaurants, commodities, etc. Consider rating data in which each product was rated on a scale of 1 to 5 by internet users. The current displays of each product`s preference are typically based on “average rating,” but it is well known that the average rating method ignores systematic differences across raters. Ho and Quinn (2008) proposed a Bayesian model and Markov chain Monte Carlo (MCMC) methods to take into account systematic differences across raters, and at the same time incorporate statistical uncertainty in the ratings. However, to work efficiently on an industrial scale and to adjust the parameters in real-time as new rating arrive, the MCMC methods may not be computationally feasible. The current project aims to provide a solution to this problem by using efficient approximation algorithm.關聯 應用研究
學術補助
研究期間:10108~ 10207
研究經費:694仟元資料類型 report dc.contributor 國立政治大學統計學系 en_US dc.contributor 行政院國家科學委員會 en_US dc.creator (作者) 翁久幸 zh_TW dc.date (日期) 2012 en_US dc.date.accessioned 30-Aug-2012 09:59:40 (UTC+8) - dc.date.available 30-Aug-2012 09:59:40 (UTC+8) - dc.date.issued (上傳時間) 30-Aug-2012 09:59:40 (UTC+8) - dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/53416 - dc.description.abstract (摘要) 網路提供給消費者大量資訊. 網路使用者在網路上對於各種產品,如電影,音樂,餐廳, 商 品等給予的評分,常常構成相當大的網路資料. 關於這類評分一分到五分或一分到十分 的資料,目前網路上常見的呈現方式是以各產品所獲得的平均評分以圖表表示(例如以 五個星號代表五分). 然而,因為沒有考慮到評分者與評分者之間的差異,這樣簡單的平 均分數可能不客觀公平. Ho and Quinn (2008) 提出一個貝氏模型並以MCMC方法估計其中參數,該模型有 納入評分者與評分者之間的差異. Ho and Quinn (2008)並且以網路資料舉例說明 他們方法比平均分數能夠更合理的解釋評分資料. 可是, 該二位作者於文章結尾也指出, 當資料量很大,甚至於當新資料進來而需要重新估計模型參數, 以MCMC方法來計算 於實際應用上是不可行的. 本研究計畫的目的就是提出一個有效可行的方法來解決這 個問題. en_US dc.description.abstract (摘要) The internet has offered consumers with a vast amount of information. One growing area of such information is ratings by internet users on various kinds of products such as movies, music, restaurants, commodities, etc. Consider rating data in which each product was rated on a scale of 1 to 5 by internet users. The current displays of each product`s preference are typically based on “average rating,” but it is well known that the average rating method ignores systematic differences across raters. Ho and Quinn (2008) proposed a Bayesian model and Markov chain Monte Carlo (MCMC) methods to take into account systematic differences across raters, and at the same time incorporate statistical uncertainty in the ratings. However, to work efficiently on an industrial scale and to adjust the parameters in real-time as new rating arrive, the MCMC methods may not be computationally feasible. The current project aims to provide a solution to this problem by using efficient approximation algorithm. en_US dc.language.iso en_US - dc.relation (關聯) 應用研究 en_US dc.relation (關聯) 學術補助 en_US dc.relation (關聯) 研究期間:10108~ 10207 en_US dc.relation (關聯) 研究經費:694仟元 en_US dc.subject (關鍵詞) 統計;貝氏方法;網路評分資料 en_US dc.title (題名) 貝氏方法在網路評分資料之應用(II) zh_TW dc.title.alternative (其他題名) Bayesian Method for Internet Rating Data en_US dc.type (資料類型) report en