Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 厚尾、偏態與壓力測試:混合分配模型的應用 作者 林子慶 貢獻者 杜化宇
林子慶關鍵詞 壓力測試
厚尾
偏態
混合分配
一般化偏態t分配日期 2011 上傳時間 30-Oct-2012 10:13:59 (UTC+8) 摘要 本文使用混合分配方法發展一個可處理厚尾,偏態(報酬分配不對稱)的壓力 測試模型。在資料上,我們以希臘國債與 S&P500 指數作為核心資產,臺灣市場 的標的資產作為邊緣資產。在與資料的配適能力上,本文發展的模型確實優於過 去假設常態分配的壓力測試模型。在實際執行壓力測試中,本研究比較了本文使 用的混合分配模型與過去模型的差異,我們發現壓力測試結果的差異相當大,因 此肯定了能抓住厚尾及偏態現象模型的重要性。 參考文獻 1. Azzalini, A., (1985) “A Class of Distributions Which Includes the Normal Ones,” Scandinavian Journal of Statistics, 12, 171-178. 2. Azzalini, A., (1986) “Further Results on a Class of Distributions Which Includes the Normal Ones,” Statistica, 46, 199-208. 3. Azzalini, A. and A. Capitaino, (2003) “Distributions Generated by Perturbation of Symmetry With Emphasis on a Multivariate Skew t-Distribution,” Journal of the Royal Statistical Society. Ser.B, 65, 367-389. 4. Basso R. M., V.H. Lachos, C.R. Cabral, P. Ghosh, (2009) “Robust mixture modeling based on scale mixtures of skew-normal distributions,” Computational Statistics & Data Analysis, 12, 2926-2941. 5. Bauwens L, Laurent S., (2005) “A New Class of Multivariate Skew Densities, With Application to Generalized Autoregressive Conditional Heteroscedasticity Models, ” Journal of Business and Economic Statistics, 23:3, 346-354. 6. Beber, A., M. W. Brandt, and K. A. Kavajecz (2009) “Flight-to-Quality or Flight-to-Liquidity? Evidence from the Euro-Area Bond Market.” Review of Financial Studies, 22, 925–957. 7. Bollerslev, T., (1987) “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, 31, 307-327. 8. Carol, A. and E. Sheedy, (2008) "Developing a stress testing framework based on market risk models," Journal of Banking & Finance, 32, 2220-2236 9. Fernandez, C. and M. F. J. Steel (1998), “On Bayesian Modelling of Fat Tails and Skewness.” Journal of the American Statistical Association, 93, 359–371. 10. Fraley, C. and A. E. Raftery, (2002) “Model-Based Clustering, Discriminant Analysis, and Density Estimation,” Journal of the American Statistical Association, 97, 611-631. 11. Gregor, J., (1969) "An algorithm for the decomposition of a distribution into Gaussian components," Biornetrics, 26, 79-93. 12. Hamilton, J. (1991), “A Quasi-Bayesian Approach to Estimating Parameters for Mixtures of Normal Distributions,” Journal of Business and Economic Statistics, 9, 1779-1801. 13. Hewitt, C. C. Jr. and B. Lefkowitz, (1979) "Methods for Fitting Distributions to Insurance Loss Data," Proceedings of the Casualty Actuarial Society, LXVI, 139-160. 14. Jones, M. C. and M. J. Faddy, (2003) “A skew extension of the t distribution, with applications,” Statist. Soc B, 65, 159–174. 15. Jorion, P., (1995) “Predicting Volatility in the Foreign Exchange Market.” Journal of Finance, 2, 507-528 16. Kim, J. and C. Finger (2000), “A stress test to incorporate correlation breakdown,” Journal of Risk, 2, 5-19. 17. Lin, T. I., J. C., Lee, and H. F., Ni, (2004) “Bayesian Analysis of Mixture Modeling Using the Multivariate t Distribution,” Statistics and Computing, 14, 119-130. 18. Lin, T. I., J. C., Lee, and S.Y., Yen, (2007) “Finite mixture modeling using the skew normal distribution,” Statistica Sinica, 17, 909-927. 19. Markowitz, H., (1952) "Portfolio selection," Journal of Finance, 7, 77-91. 20. McLachlan, G. J. and K. E. Basord, (1988) Mixture Models: Inference and Application to Clustering, Marcel Dekker, New York. 21. McLachlan, G. J. and D. Peel, (2000) Finite Mixture Models, Wiely, New York. 22. McLachlan, G. J. and D. Peel, (2000) “Robust Mixture Modeling Using the t Distribution,” Statistics and Computing, 10, 339-348. 23. Mendenhall, W. and R.J. Hader, (1958) "Estimation of parameters of mixed exponentially distributed failure time distributions from censored life test data," Biometrika, 45, 504–520. 24. Shoham, S., (2002) “Robust Clustering by Deterministic Agglomeration EM of Mixtures of Multivariate t-Distributions,” Pattern Recognition, 35, 1127-1142. 25. Shoham, S., M. R., Fellows, and R. A. Normann, (2003) “Robust, Automatic Spike Sorting Using Mixtures of Multivariate t-Distributions,” Journal of Neuroscience Methods, 127, 111-122. 26. Titterington, D. M., A. F. M. Smith, and U. E. Markov, (1985) Statistical Analysis of Finite Mixture Distributions, Wiely, New York. 27. Venkataraman, S., (1997), “Value at risk for a mixture of normal distributions: the use of quasi-Bayesian estimation techniques,” Economic Perspective, Federal Reserve Bank of Chicago, 2—13. 28. Wang, H. X., Q. B. Zhang, B. Luo, and S. Wei, (2004) “Robust Mixture Mod- elling Using Multivariate t Distribution With Missing Information”, Pattern Recognition Letter, 25, 701-710. 29. Zangari, P.,(1996) “A VaR methodology for portfolios that include options,” RiskMetrics Monitor, 4–12. 描述 碩士
國立政治大學
財務管理研究所
99357001
100資料來源 http://thesis.lib.nccu.edu.tw/record/#G0099357001 資料類型 thesis dc.contributor.advisor 杜化宇 zh_TW dc.contributor.author (Authors) 林子慶 zh_TW dc.creator (作者) 林子慶 zh_TW dc.date (日期) 2011 en_US dc.date.accessioned 30-Oct-2012 10:13:59 (UTC+8) - dc.date.available 30-Oct-2012 10:13:59 (UTC+8) - dc.date.issued (上傳時間) 30-Oct-2012 10:13:59 (UTC+8) - dc.identifier (Other Identifiers) G0099357001 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/54175 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 財務管理研究所 zh_TW dc.description (描述) 99357001 zh_TW dc.description (描述) 100 zh_TW dc.description.abstract (摘要) 本文使用混合分配方法發展一個可處理厚尾,偏態(報酬分配不對稱)的壓力 測試模型。在資料上,我們以希臘國債與 S&P500 指數作為核心資產,臺灣市場 的標的資產作為邊緣資產。在與資料的配適能力上,本文發展的模型確實優於過 去假設常態分配的壓力測試模型。在實際執行壓力測試中,本研究比較了本文使 用的混合分配模型與過去模型的差異,我們發現壓力測試結果的差異相當大,因 此肯定了能抓住厚尾及偏態現象模型的重要性。 zh_TW dc.description.tableofcontents 1. 前言 ..................................................................................... 7 2. 理論回顧暨研究方法 ............................................................. 10 2-1 一般化 Student-t 分配 ................................................... 10 2-2 混合分配模型 ................................................................. 12 2-3 EM 演算法(Expectation Maximization algorithm) ............16 2-4 模型配適 ....................................................................... 18 2-5 條件相關係數 ................................................................. 19 2-6 Broken Arrow 壓力測試法介紹 .........................................20 3. 實證分析 ............................................................................. 22 3-1 資料來源與處理 .............................................................. 22 3-2 模型配適 ....................................................................... 22 3-3 條件相關係數 ................................................................. 24 3-4 執行壓力測試 ................................................................. 27 4. 結論 ................................................................................... 28 5. 參考文獻 ............................................................................. 29 zh_TW dc.language.iso en_US - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0099357001 en_US dc.subject (關鍵詞) 壓力測試 zh_TW dc.subject (關鍵詞) 厚尾 zh_TW dc.subject (關鍵詞) 偏態 zh_TW dc.subject (關鍵詞) 混合分配 zh_TW dc.subject (關鍵詞) 一般化偏態t分配 zh_TW dc.title (題名) 厚尾、偏態與壓力測試:混合分配模型的應用 zh_TW dc.type (資料類型) thesis en dc.relation.reference (參考文獻) 1. Azzalini, A., (1985) “A Class of Distributions Which Includes the Normal Ones,” Scandinavian Journal of Statistics, 12, 171-178. 2. Azzalini, A., (1986) “Further Results on a Class of Distributions Which Includes the Normal Ones,” Statistica, 46, 199-208. 3. Azzalini, A. and A. Capitaino, (2003) “Distributions Generated by Perturbation of Symmetry With Emphasis on a Multivariate Skew t-Distribution,” Journal of the Royal Statistical Society. Ser.B, 65, 367-389. 4. Basso R. M., V.H. Lachos, C.R. Cabral, P. Ghosh, (2009) “Robust mixture modeling based on scale mixtures of skew-normal distributions,” Computational Statistics & Data Analysis, 12, 2926-2941. 5. Bauwens L, Laurent S., (2005) “A New Class of Multivariate Skew Densities, With Application to Generalized Autoregressive Conditional Heteroscedasticity Models, ” Journal of Business and Economic Statistics, 23:3, 346-354. 6. Beber, A., M. W. Brandt, and K. A. Kavajecz (2009) “Flight-to-Quality or Flight-to-Liquidity? Evidence from the Euro-Area Bond Market.” Review of Financial Studies, 22, 925–957. 7. Bollerslev, T., (1987) “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, 31, 307-327. 8. Carol, A. and E. Sheedy, (2008) "Developing a stress testing framework based on market risk models," Journal of Banking & Finance, 32, 2220-2236 9. Fernandez, C. and M. F. J. Steel (1998), “On Bayesian Modelling of Fat Tails and Skewness.” Journal of the American Statistical Association, 93, 359–371. 10. Fraley, C. and A. E. Raftery, (2002) “Model-Based Clustering, Discriminant Analysis, and Density Estimation,” Journal of the American Statistical Association, 97, 611-631. 11. Gregor, J., (1969) "An algorithm for the decomposition of a distribution into Gaussian components," Biornetrics, 26, 79-93. 12. Hamilton, J. (1991), “A Quasi-Bayesian Approach to Estimating Parameters for Mixtures of Normal Distributions,” Journal of Business and Economic Statistics, 9, 1779-1801. 13. Hewitt, C. C. Jr. and B. Lefkowitz, (1979) "Methods for Fitting Distributions to Insurance Loss Data," Proceedings of the Casualty Actuarial Society, LXVI, 139-160. 14. Jones, M. C. and M. J. Faddy, (2003) “A skew extension of the t distribution, with applications,” Statist. Soc B, 65, 159–174. 15. Jorion, P., (1995) “Predicting Volatility in the Foreign Exchange Market.” Journal of Finance, 2, 507-528 16. Kim, J. and C. Finger (2000), “A stress test to incorporate correlation breakdown,” Journal of Risk, 2, 5-19. 17. Lin, T. I., J. C., Lee, and H. F., Ni, (2004) “Bayesian Analysis of Mixture Modeling Using the Multivariate t Distribution,” Statistics and Computing, 14, 119-130. 18. Lin, T. I., J. C., Lee, and S.Y., Yen, (2007) “Finite mixture modeling using the skew normal distribution,” Statistica Sinica, 17, 909-927. 19. Markowitz, H., (1952) "Portfolio selection," Journal of Finance, 7, 77-91. 20. McLachlan, G. J. and K. E. Basord, (1988) Mixture Models: Inference and Application to Clustering, Marcel Dekker, New York. 21. McLachlan, G. J. and D. Peel, (2000) Finite Mixture Models, Wiely, New York. 22. McLachlan, G. J. and D. Peel, (2000) “Robust Mixture Modeling Using the t Distribution,” Statistics and Computing, 10, 339-348. 23. Mendenhall, W. and R.J. Hader, (1958) "Estimation of parameters of mixed exponentially distributed failure time distributions from censored life test data," Biometrika, 45, 504–520. 24. Shoham, S., (2002) “Robust Clustering by Deterministic Agglomeration EM of Mixtures of Multivariate t-Distributions,” Pattern Recognition, 35, 1127-1142. 25. Shoham, S., M. R., Fellows, and R. A. Normann, (2003) “Robust, Automatic Spike Sorting Using Mixtures of Multivariate t-Distributions,” Journal of Neuroscience Methods, 127, 111-122. 26. Titterington, D. M., A. F. M. Smith, and U. E. Markov, (1985) Statistical Analysis of Finite Mixture Distributions, Wiely, New York. 27. Venkataraman, S., (1997), “Value at risk for a mixture of normal distributions: the use of quasi-Bayesian estimation techniques,” Economic Perspective, Federal Reserve Bank of Chicago, 2—13. 28. Wang, H. X., Q. B. Zhang, B. Luo, and S. Wei, (2004) “Robust Mixture Mod- elling Using Multivariate t Distribution With Missing Information”, Pattern Recognition Letter, 25, 701-710. 29. Zangari, P.,(1996) “A VaR methodology for portfolios that include options,” RiskMetrics Monitor, 4–12. zh_TW