Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 自旋波在磁性奈米線中的微磁模擬 與 鈷/鉑,鈷/鈀,鉑/鈀多層膜的電、磁特性
Micromagnetic simulations of spin waves in magnetic nanowires and electrical, magnetic properties of Co/Pt, Co/Pd, and Pt/Pd multilayers
作者 謝智勛
Hsieh, Chih Hsun
貢獻者 李尚凡
Lee, Shang Fan
謝智勛
Hsieh, Chih Hsun
關鍵詞 自旋波
垂直異向性
磁性多層膜
自旋波波導
鈷鉑多層膜
鈷鈀多層膜
spinwaves
perpendicular magnetic anisotropy
magnetic multilayer
spin waveguide
Cobalt Platinum multilayers
Cobalt Palladium multilayers
日期 2011
上傳時間 30-Oct-2012 11:08:00 (UTC+8)
摘要 本論文分為兩部分,第一部分探討使用OOMMF磁性材料模擬軟體來模擬奈米線波導中的自旋波特性,除了以往文獻所熱門的水平異向性薄膜合金中的自旋波,還模擬了垂直異向性的材料,我們模擬了在奈米線一端施加0 ~ 100 GHz外加磁場的自旋波響應。在模擬的結果中,我們發現了水平異向性與垂直異向性的重要差別,垂直異向性比水平異向性波導在頻率小於10 GHz時,少了複雜的自旋波傳遞。而在改變線寬的條件中,我們發現了垂直異向性波導在線寬夠大時,會因退磁場的效應,使得磁矩翻轉,形成許多磁壁,而水平異向性材料則不會,從水平異向性波導大於120 nm線寬的波型中,則會發現自旋波在波導中產生破碎的相位改變。而模擬具有水平寬度變化與垂直厚度變化的週期性邊界,則發現兩者所具有的濾波效果非常相似,而濾波的三個頻段,則是水平寬度變化所截止的頻段,寬於垂直厚度變化的頻段。
第二部分為 ,使用離子濺鍍製成總厚度200 nm,改變交錯層數的(Co/Pt)×N、(Co/Pd) ×N與(Pt/Pd) ×N,三種多層膜的磁性電性分析。Co/Pt與Co/Pd多層膜在Co厚度小於1 nm時為熱門垂直異向性材料,而本實驗專注於Co厚度大於1 nm時介面的特性以及兩種材料的差別。在磁阻的量測上面,得到不同於一般異向性磁阻的規律,一般的異向性磁阻的現象為,平行於電流施加磁場比垂直電流施加磁場所量測的電阻,前者電阻較大(ρ_(H∥I)>ρ_(H⊥I)),但是同為垂直於電流的平行於膜面磁場的電阻(ρ_(H⊥I,in-plane H))與垂直膜面磁場(ρ_(H⊥I,H perpendicular to plane))則呈現了不一樣的行為,尤其為垂直加場的部分,在某些條件的多層膜,會有明顯的垂直方向的異向性磁阻,是為介面所造成額外的垂直方向異向性磁阻,稱作”異向性介面磁阻”(Anisotropic Interface Magnetoresistance)。異向性磁阻與異性向介面磁阻都具有高電阻軸與垂直此軸的低電阻平面,而兩者差別在於異向性磁阻為電流方向軸,而異向性介面磁阻為膜面法向量軸,對於本實驗的量測方法來說,兩軸相差90度角,也因此可辨析兩者不同現象間的差異,並且在我們的分析之中發現,異向性介面磁阻在Co厚度為7 nm以下,才會明顯的顯現。
The thesis is divided into two main parts. The first part discusses the properties of spin waves propagation in magnetic nanowire waveguide by micromagnetic simulation software OOMMF. In addition to in-plane magnetic anisotropy (IMA) in the thin film alloys, we simulate the perpendicular magnetic anisotropy (PMA) of the material. A transverse magnetic field is applied at one end of the waveguide wire and the frequency range is from 0 to 100 GHz. When frequency is less than 10 GHz, we observed that complex modes were generated in the IMA waveguide but there is no spin wave propagates in the PMA waveguide. We also studied the spin wave propagations in wires with different width. Irregular domain wall was generated by demagnetizing field in wider PMA waveguide but IMA waveguide does not have this behavior. In width-modulated and thickness-modulated waveguide spin wave simulations, these two filters have similar results with three band gaps from 0 to 100 GHz and the band gaps in width-modulated wire is wider than in thickness-modulated one.
The second part is experimental measurements of the electrical and magnetic properties of (Co/Pt)×N, (Co/Pd) ×N, and (Pt/Pd) ×N multilayers, which are deposited by sputtering and the total thickness is 200nm. Co/Pt and Co/Pd were popular PMA materials when Co thickness is less than 1 nm. We focused on the multilayers with Co thicker than 1nm and the difference between these multilayers. In magnetoresistance measurement, the R-H curve is different from normal anisotropic magnetoresistance (AMR). AMR effect has different resistivity when H∥I or H⊥I, but the measurement results show that ρ_(H⊥I,in-plane H) and ρ_(H⊥I,H perpendicular to plane) also have different MR ratio in specific multilayer configuration. The effect is caused by the interface so it is anisotropic interface magnetoresistance (AIMR) as discussed in the literature. AMR and AIMR have both high resistivity axis and low resistivity plane which is perpendicular to the axis. The difference of two MRs is that the high resistivity axis is parallel to current in AMR and perpendicular to plane in AIMR. In the analysis, the AIMR effect is observed in multilayer with Co thickness less than 7 nm.
參考文獻 [1] K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, A. Thiaville, and T. Ono, Nat. Mater. 6, 270 (2007).
[2] M. Bolte, G. Meier, and C. Bayer, Phys. Rev. B 73, 052406 (2006).
[3] J. Podbielski, F. Giesen, and D. Grundler, Phys. Rev. Lett. 96, 167207 (2006).
[4] K. S. Lee, D. S. Han, and S. K. Kim, Phys. Rev. Lett. 102, 127202 (2009).
[5] K. S. Lee and S. K. Kim, J. Appl. Phys. 104, 053909 (2008).
[6] P. F. Garcia, A. D. Meinhaldt, and A. Suna, Appl. Phys. Lett. 47, 178 (1985).
[7] F. J. A. den Broeder, V. Hoving, and P. J. H. Bloemen, J. Magn. Magn. Mater. 93, 562 (1991).
[8] N. W. E. McGee, M. T. Johnson, J. J. de Vries, and J. ann de Stegge, J. Appl. Phys. 73, 3418 (1993).
[9] C.-J. Lin, G. L. Gorman, C. H. Lee, R. F. C. Farrow, E. E. Marinero, H. V Do, H. Notarys, and C. J. Chien, J. Magn. Magn. Mater. 93, 194 (1991).
[10] G. H. O. Daalderop, P. J. Kelly, and F. J. den Broeder, Phys. Rev. Lett. 68, 682 (1992).
[11] G. Y. Guo, S. Murakami, T.-W. Chen, and N. Nagaosa, Phys. Rev. Lett. 100, 096401 (2008).
[12] L. Vila, T. Kimura, and Y. C. Otani, Phys. Rev. Lett. 99, 226604 (2007).
[13] A. Kobs, S. Heße, W. Kreuzpaintner, G. Winkler, D. Lott, P. Weinberger, A. Schreyer, and H. P. Oepen, Phys. Rev. Lett. 106, 217207 (2011).
[14] S. Chikazumi, Physics of Ferromagnetism, Clarendon Press, 1997.
[15] Massimiliano d’Aquino, Nonlinear Magnetization Dynamics in Thin-film and Nanoparticles, Ph.D. thesis, Naples Italy: University of Naples Federico II, 2004.
[16] D. Houssameddine, U. Ebels, B. Delaet, B. Rodmacq, I. Firastrau, F. Ponthenier, M. Brunet, C. Thirion, J.-P. Michel, L. Prejbeanu-Buda, M. C. Cyrille, O. Redon, and B. Dieny, Nat. Mater. 6, 447 (2007).
[17] J. H. Chang, H. H. Chen, and C. R. Chang, Phys. Rev. B 83, 054425 (2011).
[18] J. Nickel. (1995), Magnetoresistance Overview [Online], http://www.hpl.hp.com/techreports/95/HPL-95-60.pdf
[19] S. K. Kim, J. Phys. D: Appl. Phys. 43, 264004 (2010).
[20] S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
[21] NIST OOMMF software v.1.2a4, http://math.nist.gov/oommf/
[22] C. Kittel, Introduction to Solid State Physics, 8th ed.,John Wiley & Sons, 2004.
[23] E. E. Fullerton, I. K. Schuller, H. Vanderstraeten, and Y. Bruynseraede, Phys. Rev. B 45, 9292 (1992).
[24] S. Witanachchi, H. Abou Mourad, H. Srikanth, and P. Mukherjee, Appl. Phys. Lett. 90, 052102 (2007).
[25] S. Witanachchi, H.Weerasingha, H. Abou Mourad, and P. Mukherjee, Physica B 405, 208-213 (2010).
[26] W. Gouda and K. Shiiki, J. Magn. Magn. Mater. 205, 136 (1999).
[27] G. Deutscher and H. Fukuyama, Phys. Rev. B 25, 4298 (1982).
[28] R. S. Markiewicz and C. J. Rollins, Phys. Rev. B 29, 735 (1984).
描述 碩士
國立政治大學
應用物理研究所
99755014
100
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0099755014
資料類型 thesis
dc.contributor.advisor 李尚凡zh_TW
dc.contributor.advisor Lee, Shang Fanen_US
dc.contributor.author (Authors) 謝智勛zh_TW
dc.contributor.author (Authors) Hsieh, Chih Hsunen_US
dc.creator (作者) 謝智勛zh_TW
dc.creator (作者) Hsieh, Chih Hsunen_US
dc.date (日期) 2011en_US
dc.date.accessioned 30-Oct-2012 11:08:00 (UTC+8)-
dc.date.available 30-Oct-2012 11:08:00 (UTC+8)-
dc.date.issued (上傳時間) 30-Oct-2012 11:08:00 (UTC+8)-
dc.identifier (Other Identifiers) G0099755014en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/54465-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用物理研究所zh_TW
dc.description (描述) 99755014zh_TW
dc.description (描述) 100zh_TW
dc.description.abstract (摘要) 本論文分為兩部分,第一部分探討使用OOMMF磁性材料模擬軟體來模擬奈米線波導中的自旋波特性,除了以往文獻所熱門的水平異向性薄膜合金中的自旋波,還模擬了垂直異向性的材料,我們模擬了在奈米線一端施加0 ~ 100 GHz外加磁場的自旋波響應。在模擬的結果中,我們發現了水平異向性與垂直異向性的重要差別,垂直異向性比水平異向性波導在頻率小於10 GHz時,少了複雜的自旋波傳遞。而在改變線寬的條件中,我們發現了垂直異向性波導在線寬夠大時,會因退磁場的效應,使得磁矩翻轉,形成許多磁壁,而水平異向性材料則不會,從水平異向性波導大於120 nm線寬的波型中,則會發現自旋波在波導中產生破碎的相位改變。而模擬具有水平寬度變化與垂直厚度變化的週期性邊界,則發現兩者所具有的濾波效果非常相似,而濾波的三個頻段,則是水平寬度變化所截止的頻段,寬於垂直厚度變化的頻段。
第二部分為 ,使用離子濺鍍製成總厚度200 nm,改變交錯層數的(Co/Pt)×N、(Co/Pd) ×N與(Pt/Pd) ×N,三種多層膜的磁性電性分析。Co/Pt與Co/Pd多層膜在Co厚度小於1 nm時為熱門垂直異向性材料,而本實驗專注於Co厚度大於1 nm時介面的特性以及兩種材料的差別。在磁阻的量測上面,得到不同於一般異向性磁阻的規律,一般的異向性磁阻的現象為,平行於電流施加磁場比垂直電流施加磁場所量測的電阻,前者電阻較大(ρ_(H∥I)>ρ_(H⊥I)),但是同為垂直於電流的平行於膜面磁場的電阻(ρ_(H⊥I,in-plane H))與垂直膜面磁場(ρ_(H⊥I,H perpendicular to plane))則呈現了不一樣的行為,尤其為垂直加場的部分,在某些條件的多層膜,會有明顯的垂直方向的異向性磁阻,是為介面所造成額外的垂直方向異向性磁阻,稱作”異向性介面磁阻”(Anisotropic Interface Magnetoresistance)。異向性磁阻與異性向介面磁阻都具有高電阻軸與垂直此軸的低電阻平面,而兩者差別在於異向性磁阻為電流方向軸,而異向性介面磁阻為膜面法向量軸,對於本實驗的量測方法來說,兩軸相差90度角,也因此可辨析兩者不同現象間的差異,並且在我們的分析之中發現,異向性介面磁阻在Co厚度為7 nm以下,才會明顯的顯現。
zh_TW
dc.description.abstract (摘要) The thesis is divided into two main parts. The first part discusses the properties of spin waves propagation in magnetic nanowire waveguide by micromagnetic simulation software OOMMF. In addition to in-plane magnetic anisotropy (IMA) in the thin film alloys, we simulate the perpendicular magnetic anisotropy (PMA) of the material. A transverse magnetic field is applied at one end of the waveguide wire and the frequency range is from 0 to 100 GHz. When frequency is less than 10 GHz, we observed that complex modes were generated in the IMA waveguide but there is no spin wave propagates in the PMA waveguide. We also studied the spin wave propagations in wires with different width. Irregular domain wall was generated by demagnetizing field in wider PMA waveguide but IMA waveguide does not have this behavior. In width-modulated and thickness-modulated waveguide spin wave simulations, these two filters have similar results with three band gaps from 0 to 100 GHz and the band gaps in width-modulated wire is wider than in thickness-modulated one.
The second part is experimental measurements of the electrical and magnetic properties of (Co/Pt)×N, (Co/Pd) ×N, and (Pt/Pd) ×N multilayers, which are deposited by sputtering and the total thickness is 200nm. Co/Pt and Co/Pd were popular PMA materials when Co thickness is less than 1 nm. We focused on the multilayers with Co thicker than 1nm and the difference between these multilayers. In magnetoresistance measurement, the R-H curve is different from normal anisotropic magnetoresistance (AMR). AMR effect has different resistivity when H∥I or H⊥I, but the measurement results show that ρ_(H⊥I,in-plane H) and ρ_(H⊥I,H perpendicular to plane) also have different MR ratio in specific multilayer configuration. The effect is caused by the interface so it is anisotropic interface magnetoresistance (AIMR) as discussed in the literature. AMR and AIMR have both high resistivity axis and low resistivity plane which is perpendicular to the axis. The difference of two MRs is that the high resistivity axis is parallel to current in AMR and perpendicular to plane in AIMR. In the analysis, the AIMR effect is observed in multilayer with Co thickness less than 7 nm.
en_US
dc.description.tableofcontents 誌謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
第二章 磁性基本理論 5
2-1 物質的磁性 5
2-2 磁結構與磁異向性 10
2-3 磁阻 14
第三章 耦合-交換自旋波模擬 16
3-1 自旋波波導模擬文獻回顧 16
3-2 研究方法與流程 19
3-3 模擬軟體與參數設定 20
3-3-1 OOMMF軟體與tcl/tk語言環境套件 20
3-3-2 建立模擬參數檔 21
3-3-3 電腦運算與資料輸出 24
3-4 模擬的結果與分析 26
3-4-1 水平與垂直異向性30 nm線寬磁性波導的自旋波傳播 28
3-4-2 改變線寬水平與垂直異向性波導的自旋波傳播 36
3-4-3 水平寬度變化的自旋波濾波波導 41
3-4-4 垂直厚度變化的自旋波濾波波導 44

第四章 鈷/鈀、鈷/鉑多層膜磁性與電性 47
4-1 文獻回顧 47
4-2 研究方法與流程 48
4-3 實驗儀器 50
4-4 實驗結果與數據分析 55
4-4-1 Co/Pt與Co/Pd多層膜X-Ray Diffraction量測與分析 55
4-4-2 Co/Pt與Co/Pd多層膜VSM磁性量測與分析 59
4-4-3 Co/Pt、Co/Pd與Pt/Pd多層膜基本電性 63
4-4-4 Co/Pt與Co/Pd多層膜電阻對溫度量測與分析 65
4-4-5 Co/Pt與Co/Pd多層膜電阻對磁場量測與分析 71
第五章 結論 80
參考文獻 85
附錄 OOMMF軟體簡介簡報 88
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0099755014en_US
dc.subject (關鍵詞) 自旋波zh_TW
dc.subject (關鍵詞) 垂直異向性zh_TW
dc.subject (關鍵詞) 磁性多層膜zh_TW
dc.subject (關鍵詞) 自旋波波導zh_TW
dc.subject (關鍵詞) 鈷鉑多層膜zh_TW
dc.subject (關鍵詞) 鈷鈀多層膜zh_TW
dc.subject (關鍵詞) spinwavesen_US
dc.subject (關鍵詞) perpendicular magnetic anisotropyen_US
dc.subject (關鍵詞) magnetic multilayeren_US
dc.subject (關鍵詞) spin waveguideen_US
dc.subject (關鍵詞) Cobalt Platinum multilayersen_US
dc.subject (關鍵詞) Cobalt Palladium multilayersen_US
dc.title (題名) 自旋波在磁性奈米線中的微磁模擬 與 鈷/鉑,鈷/鈀,鉑/鈀多層膜的電、磁特性zh_TW
dc.title (題名) Micromagnetic simulations of spin waves in magnetic nanowires and electrical, magnetic properties of Co/Pt, Co/Pd, and Pt/Pd multilayersen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, A. Thiaville, and T. Ono, Nat. Mater. 6, 270 (2007).
[2] M. Bolte, G. Meier, and C. Bayer, Phys. Rev. B 73, 052406 (2006).
[3] J. Podbielski, F. Giesen, and D. Grundler, Phys. Rev. Lett. 96, 167207 (2006).
[4] K. S. Lee, D. S. Han, and S. K. Kim, Phys. Rev. Lett. 102, 127202 (2009).
[5] K. S. Lee and S. K. Kim, J. Appl. Phys. 104, 053909 (2008).
[6] P. F. Garcia, A. D. Meinhaldt, and A. Suna, Appl. Phys. Lett. 47, 178 (1985).
[7] F. J. A. den Broeder, V. Hoving, and P. J. H. Bloemen, J. Magn. Magn. Mater. 93, 562 (1991).
[8] N. W. E. McGee, M. T. Johnson, J. J. de Vries, and J. ann de Stegge, J. Appl. Phys. 73, 3418 (1993).
[9] C.-J. Lin, G. L. Gorman, C. H. Lee, R. F. C. Farrow, E. E. Marinero, H. V Do, H. Notarys, and C. J. Chien, J. Magn. Magn. Mater. 93, 194 (1991).
[10] G. H. O. Daalderop, P. J. Kelly, and F. J. den Broeder, Phys. Rev. Lett. 68, 682 (1992).
[11] G. Y. Guo, S. Murakami, T.-W. Chen, and N. Nagaosa, Phys. Rev. Lett. 100, 096401 (2008).
[12] L. Vila, T. Kimura, and Y. C. Otani, Phys. Rev. Lett. 99, 226604 (2007).
[13] A. Kobs, S. Heße, W. Kreuzpaintner, G. Winkler, D. Lott, P. Weinberger, A. Schreyer, and H. P. Oepen, Phys. Rev. Lett. 106, 217207 (2011).
[14] S. Chikazumi, Physics of Ferromagnetism, Clarendon Press, 1997.
[15] Massimiliano d’Aquino, Nonlinear Magnetization Dynamics in Thin-film and Nanoparticles, Ph.D. thesis, Naples Italy: University of Naples Federico II, 2004.
[16] D. Houssameddine, U. Ebels, B. Delaet, B. Rodmacq, I. Firastrau, F. Ponthenier, M. Brunet, C. Thirion, J.-P. Michel, L. Prejbeanu-Buda, M. C. Cyrille, O. Redon, and B. Dieny, Nat. Mater. 6, 447 (2007).
[17] J. H. Chang, H. H. Chen, and C. R. Chang, Phys. Rev. B 83, 054425 (2011).
[18] J. Nickel. (1995), Magnetoresistance Overview [Online], http://www.hpl.hp.com/techreports/95/HPL-95-60.pdf
[19] S. K. Kim, J. Phys. D: Appl. Phys. 43, 264004 (2010).
[20] S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
[21] NIST OOMMF software v.1.2a4, http://math.nist.gov/oommf/
[22] C. Kittel, Introduction to Solid State Physics, 8th ed.,John Wiley & Sons, 2004.
[23] E. E. Fullerton, I. K. Schuller, H. Vanderstraeten, and Y. Bruynseraede, Phys. Rev. B 45, 9292 (1992).
[24] S. Witanachchi, H. Abou Mourad, H. Srikanth, and P. Mukherjee, Appl. Phys. Lett. 90, 052102 (2007).
[25] S. Witanachchi, H.Weerasingha, H. Abou Mourad, and P. Mukherjee, Physica B 405, 208-213 (2010).
[26] W. Gouda and K. Shiiki, J. Magn. Magn. Mater. 205, 136 (1999).
[27] G. Deutscher and H. Fukuyama, Phys. Rev. B 25, 4298 (1982).
[28] R. S. Markiewicz and C. J. Rollins, Phys. Rev. B 29, 735 (1984).
zh_TW