Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 在MANET中基於社群關係導向之傳輸機制研究
A social relationship based transmission scheme in MANET
作者 李佩璇
Lee, Pei Hsuan
貢獻者 張宏慶
Jang, Hung Chin
李佩璇
Lee, Pei Hsuan
關鍵詞 社群關係
行動隨意網路
Social Relationship
MANET
日期 2011
上傳時間 30-Oct-2012 15:22:01 (UTC+8)
摘要 資訊世代的來臨,手機、筆記型電腦、iPod、iPad不勝枚舉的手持行動裝置充斥在我們的生活周遭。這些裝置上都擁有一種以上的無線網路介面,例如:紅外線、藍芽、WiFi,及行動網路介面等。由於手持裝置的盛行,構成行動隨意網路(Mobile Ad Hoc Network)的傳輸空間越來越普遍,伴隨而來的問題如節點可能任意移動,拓樸不斷改變等,造成傳輸中斷。而在有網路的環境下如何從較信任的人(節點)獲取較可信任的資訊,將是重要的議題。因此本論文導入目前炙手可熱與我們生活密不可分的社群網路(social network),利用社會網路分析(social network analysis)將人與人之間關係數據化,做為轉傳依據。我們提出Ego-Centric Social Network Routing中繼節點 (relay node) 選擇的策略,簡稱ECSNR。除了利用社會網路分析的方法外也加入候選清單,使負載過重的節點直接由清單中之候選節點協助轉傳、推薦清單,讓路由中繼的位置更靠近負載過重之節點,加速訊息的傳遞,也可藉由緊密度高且較可信任之節點協助傳送。另外當訊息無法藉由社會網路輔助(social networking aided)傳輸時,便會利用興趣導向(interest-based)傳輸,依照節點興趣相似性判別興趣區間,將訊息傳遞出去。最後,由實驗模擬結果得知,當網路節點數量增加時,封包送達率能有7.4%~15.8%的改善。End to end delay有10%~15.2%的改善;control overhead雖然較遜色,但依然平均控制在9.4%內。Average hop count平均減少1.7 個hops數。網路移動速度比較的實驗中,封包送達率能有8%~24.2%的改善;control overhead雖然較遜色,但依然平均控制在8.8%內。End to end delay有約4.7%~15.2%的改善;average hop count平均減少2.4個hops數。
With the coming of information era, our lives have been filled with varied mobile devices, such as cell phones, notebooks, iPods, and iPads. All these devices are equipped with more than one wireless network interface, including Infrared, Bluetooth, WiFi, mobile network interface etc. Due to the popularity of mobile devices, Mobile Ad Hoc Networks have been more widespread than ever. However, movable nodes and the constantly changing topology could cause transmission interruption. Therefore, “how to obtain trustworthy information from trusty nodes” is a significant issue.

This thesis geared toward the social network which is inseparable from our lives at this moment. In this thesis, social network analysis is employed, and the relationship data is used as the base of relay. We propose a relay-node selection strategy of Ego-Centric Social Network Routing (ECSNR), and apply the method of using candidate list. All these can be used to speed up the transmission process. Because the candidate nodes are the closest ones to the overloaded nodes, the relay process can be more efficient and speedy. The transmission can also be done through the stable and trustworthy nodes. When a message can not be transmitted through the social network aided nodes, the interest based nodes can help to transmit according to the interest similarity.

The results of experiment simulations show that along with the increase of network nodes, the packet delivery ratio can be improved by 7.4% ~ 15.8%. The end to end delay can be improved by 10% ~ 15.2%, and the average control overhead is within 9.4%. The average hop count can be reduced by 1.7 hops. Given the nodes are moving, the packet delivery ratio can be improved by 8%~24.2%, and the average control overhead is within 8.8%. The end to end delay can be improved by 4.7% ~ 15.2%, and the average hop count can be reduced by 2.4 hops.
參考文獻 [1] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Internets,” Intel Research Technical Report IRB-TR-03-003, Feb. 2003.
[2] A. Gainaru, C. Dobre, and V. Cristea, “A Realistic Mobility Model Based on Social Networks for the Simulation of VANETs,” in Proc. Vehicular Technology Conference (VTC`09), Barcelona, Spain, pp. 1-5, Apr. 26-29, 2009.
[3] R. Lu, X. Lin, and X. Shen, “SPRING: A Social-based Privacy-preserving Packet Forwarding Protocol for Vehicular Delay Tolerant Networks,” in Proc. IEEE INFOCOM, San Diego, USA, pp. 1-9, Mar. 15-19, 2010.
[4] D. Huang, Z. Zhou, X. Hong, and M. Gerla, “Establishing Email-based Social Network Trust for Vehicular Networks,” in Proc. Consumer Communications and Networking Conference (CCNC), Las Vegas, Nevada, USA, pp. 1-5, Jan. 09-12, 2010.
[5] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble Rap: Social-based Forwarding in Delay Tolerant Networks,” in Proc. ACM MobiHoc, Hong Kong, China, pp. 241-250, May. 26-30, 2008.
[6] A. Clauset, “Finding Local Community Structure in Networks,” Physical Review E, vol. 72, no. 2, Aug. 2005.
[7] A. Mei, G. Morabito, P. Santi, and J. Stefa, “Social-aware Stateless Forwarding in Pocket Switched Networks,” in Proc. INFOCOM, Calcutta, pp. 251-255, Apr. 10-15, 2011.
[8] Juan Rodríguez-Covili, Sergio F. Ochoa, and Raúl Aliaga, “Extending Internet-Enabled Social Networks.” Retrieved: http://swp.dcc.uchile.cl/TR/2011/TR_DCC-20110329-004.pdf, Oct. 2011.
[9] M. Everett and S. P. Borgatti, “Ego Network Betweenness,” Social Networks, vol. 27, no. 1, pp. 31-38, Jan. 2005.
[10] E. Daly and M. Haahr, “Social Network Analysis for Routing in Disconnected Delay-Tolerant MANETs,” in Proc. ACM MobiHoc, Sep. 2007.
[11] J.A. Barnes, “Class and Committees in a Norwegian Island Parish,” Hum Relations, vol. 7, no. 1, pp. 39-58, Feb. 1954.
[12] L. C. Freeman, “A Set of Measures of Centrality based on Betweenness,” Sociometry, vol. 40, no. 1, pp. 35-41, 1977.
[13] John Scott, Social Network Analysis: A Handbook, 2nd edition, London, Sage Publications, 2000.
[14] L. C. Freeman, Centrality in Social Networks Conceptual Clarification, Social Networks, no. 1, pp. 215-239, 1979.
[15] T. Hu, F. Hong, X. Zhang, and Z. Guo, “BiBUBBLE: Social-based Forwarding in Pocket Switched Networks,” in Proc. Ubiquitous Intelligence & Computing and 7th International Conference on Autonomic & Trusted Computing (UIC/ATC’10), Xian, Shaanxi, China, pp. 195-199, Oct. 26-29, 2010.
[16] C. E. Perkins and E. M. Royer, “Ad-hoc On-demand Distance Vector Routing,” in Proc. IEEE WMCSA, pp. 90-100, Feb. 1999.
[17] E. Royer and C. K. Toh, “A Review of Current Routing Protocols for Ad Hoc Mobile Wireless Networks,” IEEE Personal Communications Magazine, pp. 46-55, Apr. 1999.
[18] C. E. Perkins and E. M. Royer, “Highly Dynamic Destination Sequenced Distance Vector Routing (DSDV) for Mobile Computer,” in Proc. ACM Special Interest Group on Data Communication, London, UK, pp. 234-244, Sep. 1994.
[19] S. Corson and J. Macker, “Mobile Ad hoc Networking (MANET): Routing Protocol Performance Issues and Evaluation Considerations,” RFC2501. Retrieved: http://www.faqs.org/rfcs/rfc2501.html, http://www.ietf.org/rfc/rfc2501.txt, Jan. 1999.
[20] D. B. Jhonson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless Networks,” Mobile Computing, Kluwere Academic Publishers, pp. 153-181, 1996.
[21] Z. Hass and M. Pearlman, “The Performance of Query Control Schemes for the Zone Routing Protocol,” in Proc. ACM SIGCOMM, pp. 167-177, Aug. 1998.
[22] “The Network Simulator ns 2.35.” Retrieved:
http://www.isi.edu/nsnam/ns/index.html, Nov. 2011.
[23] C. Siva Ram Murthy and B. S. Manoj, Ad Hoc Wireless Networks: Architectures and Protocols, Prentice Hall PTR, 2004.
描述 碩士
國立政治大學
資訊科學學系
98753011
100
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0987530111
資料類型 thesis
dc.contributor.advisor 張宏慶zh_TW
dc.contributor.advisor Jang, Hung Chinen_US
dc.contributor.author (Authors) 李佩璇zh_TW
dc.contributor.author (Authors) Lee, Pei Hsuanen_US
dc.creator (作者) 李佩璇zh_TW
dc.creator (作者) Lee, Pei Hsuanen_US
dc.date (日期) 2011en_US
dc.date.accessioned 30-Oct-2012 15:22:01 (UTC+8)-
dc.date.available 30-Oct-2012 15:22:01 (UTC+8)-
dc.date.issued (上傳時間) 30-Oct-2012 15:22:01 (UTC+8)-
dc.identifier (Other Identifiers) G0987530111en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/55035-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 98753011zh_TW
dc.description (描述) 100zh_TW
dc.description.abstract (摘要) 資訊世代的來臨,手機、筆記型電腦、iPod、iPad不勝枚舉的手持行動裝置充斥在我們的生活周遭。這些裝置上都擁有一種以上的無線網路介面,例如:紅外線、藍芽、WiFi,及行動網路介面等。由於手持裝置的盛行,構成行動隨意網路(Mobile Ad Hoc Network)的傳輸空間越來越普遍,伴隨而來的問題如節點可能任意移動,拓樸不斷改變等,造成傳輸中斷。而在有網路的環境下如何從較信任的人(節點)獲取較可信任的資訊,將是重要的議題。因此本論文導入目前炙手可熱與我們生活密不可分的社群網路(social network),利用社會網路分析(social network analysis)將人與人之間關係數據化,做為轉傳依據。我們提出Ego-Centric Social Network Routing中繼節點 (relay node) 選擇的策略,簡稱ECSNR。除了利用社會網路分析的方法外也加入候選清單,使負載過重的節點直接由清單中之候選節點協助轉傳、推薦清單,讓路由中繼的位置更靠近負載過重之節點,加速訊息的傳遞,也可藉由緊密度高且較可信任之節點協助傳送。另外當訊息無法藉由社會網路輔助(social networking aided)傳輸時,便會利用興趣導向(interest-based)傳輸,依照節點興趣相似性判別興趣區間,將訊息傳遞出去。最後,由實驗模擬結果得知,當網路節點數量增加時,封包送達率能有7.4%~15.8%的改善。End to end delay有10%~15.2%的改善;control overhead雖然較遜色,但依然平均控制在9.4%內。Average hop count平均減少1.7 個hops數。網路移動速度比較的實驗中,封包送達率能有8%~24.2%的改善;control overhead雖然較遜色,但依然平均控制在8.8%內。End to end delay有約4.7%~15.2%的改善;average hop count平均減少2.4個hops數。zh_TW
dc.description.abstract (摘要) With the coming of information era, our lives have been filled with varied mobile devices, such as cell phones, notebooks, iPods, and iPads. All these devices are equipped with more than one wireless network interface, including Infrared, Bluetooth, WiFi, mobile network interface etc. Due to the popularity of mobile devices, Mobile Ad Hoc Networks have been more widespread than ever. However, movable nodes and the constantly changing topology could cause transmission interruption. Therefore, “how to obtain trustworthy information from trusty nodes” is a significant issue.

This thesis geared toward the social network which is inseparable from our lives at this moment. In this thesis, social network analysis is employed, and the relationship data is used as the base of relay. We propose a relay-node selection strategy of Ego-Centric Social Network Routing (ECSNR), and apply the method of using candidate list. All these can be used to speed up the transmission process. Because the candidate nodes are the closest ones to the overloaded nodes, the relay process can be more efficient and speedy. The transmission can also be done through the stable and trustworthy nodes. When a message can not be transmitted through the social network aided nodes, the interest based nodes can help to transmit according to the interest similarity.

The results of experiment simulations show that along with the increase of network nodes, the packet delivery ratio can be improved by 7.4% ~ 15.8%. The end to end delay can be improved by 10% ~ 15.2%, and the average control overhead is within 9.4%. The average hop count can be reduced by 1.7 hops. Given the nodes are moving, the packet delivery ratio can be improved by 8%~24.2%, and the average control overhead is within 8.8%. The end to end delay can be improved by 4.7% ~ 15.2%, and the average hop count can be reduced by 2.4 hops.
en_US
dc.description.tableofcontents 第一章 緒論 1
1.1研究背景 1
1.1.1 MANET (Mobile Ad Hoc Networks)特性 3
1.1.2 PSN (Pocket Switched Networking)簡介 8
1.1.3 DTN (Delay Tolerant Networks)簡介 9
1.2研究動機與目的 10
1.3論文組織與架構 11
第二章 相關研究-文獻探討 12
2.1社群網路之沿革 12
2.1.1社會網路分析 12
2.2車載網路環境下社群網路相關研究 18
2.2.1基於行車方向分成不同群組 18
2.2.2基於車輛密度架設RSU 19
2.2.3基於Email建立可靠傳輸 21
2.3 行動載具環境下社群網路相關研究 24
2.3.1 BUBBLE Rap: Social-based Forwarding in Delay Tolerant Networks 24
2.3.2 Social-Aware Stateless Forwarding in Pocket Switched Networks 26
2.3.3 Extending Internet-Enabled Social Networks 27
2.3.4 Social Network Analysis for Routing in Disconnected Delay-Tolerant MANETs 28
2.4 社群網路相關研究 30
2.4.1 Finding Local Community Structure in Networks 30
2.4.2 Ego Network Betweenness 31
第三章 研究方法 34
3.1議題分析與討論 35
3.1.1 社群網路在車載網路之運作方式 35
3.1.2 社群網路在行動載具網路之運作方式 36
3.2研究方法 38
3.2.1個體中心度社群網路路由機制(Ego-Centric Social Network Routing) 39
3.2.2 相異度選擇機制 43
3.2.3 個體網路中間度(Ego Network Betweenness) 44
3.2.4 備援(輔助)機制 47
3.2.5 ECSNR輔助選擇中繼點策略 51
3.3 ECSNR架構流程圖 57
3.4 Ego-Centric Social Network Routing (ECSNR) Pseudo Code 58
第四章 模擬實驗與數據分析 62
4.1 模擬環境 62
4.2 模擬環境參數設定 63
4.3 實驗結果及分析 65
4.3.1 觀察節點數量的變化 66
4.3.2 觀察節點移動速度的變化 71
第五章 結論與未來展望 76
5.1 結論 76
5.2 未來研究 77
參考文獻 78
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0987530111en_US
dc.subject (關鍵詞) 社群關係zh_TW
dc.subject (關鍵詞) 行動隨意網路zh_TW
dc.subject (關鍵詞) Social Relationshipen_US
dc.subject (關鍵詞) MANETen_US
dc.title (題名) 在MANET中基於社群關係導向之傳輸機制研究zh_TW
dc.title (題名) A social relationship based transmission scheme in MANETen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Internets,” Intel Research Technical Report IRB-TR-03-003, Feb. 2003.
[2] A. Gainaru, C. Dobre, and V. Cristea, “A Realistic Mobility Model Based on Social Networks for the Simulation of VANETs,” in Proc. Vehicular Technology Conference (VTC`09), Barcelona, Spain, pp. 1-5, Apr. 26-29, 2009.
[3] R. Lu, X. Lin, and X. Shen, “SPRING: A Social-based Privacy-preserving Packet Forwarding Protocol for Vehicular Delay Tolerant Networks,” in Proc. IEEE INFOCOM, San Diego, USA, pp. 1-9, Mar. 15-19, 2010.
[4] D. Huang, Z. Zhou, X. Hong, and M. Gerla, “Establishing Email-based Social Network Trust for Vehicular Networks,” in Proc. Consumer Communications and Networking Conference (CCNC), Las Vegas, Nevada, USA, pp. 1-5, Jan. 09-12, 2010.
[5] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble Rap: Social-based Forwarding in Delay Tolerant Networks,” in Proc. ACM MobiHoc, Hong Kong, China, pp. 241-250, May. 26-30, 2008.
[6] A. Clauset, “Finding Local Community Structure in Networks,” Physical Review E, vol. 72, no. 2, Aug. 2005.
[7] A. Mei, G. Morabito, P. Santi, and J. Stefa, “Social-aware Stateless Forwarding in Pocket Switched Networks,” in Proc. INFOCOM, Calcutta, pp. 251-255, Apr. 10-15, 2011.
[8] Juan Rodríguez-Covili, Sergio F. Ochoa, and Raúl Aliaga, “Extending Internet-Enabled Social Networks.” Retrieved: http://swp.dcc.uchile.cl/TR/2011/TR_DCC-20110329-004.pdf, Oct. 2011.
[9] M. Everett and S. P. Borgatti, “Ego Network Betweenness,” Social Networks, vol. 27, no. 1, pp. 31-38, Jan. 2005.
[10] E. Daly and M. Haahr, “Social Network Analysis for Routing in Disconnected Delay-Tolerant MANETs,” in Proc. ACM MobiHoc, Sep. 2007.
[11] J.A. Barnes, “Class and Committees in a Norwegian Island Parish,” Hum Relations, vol. 7, no. 1, pp. 39-58, Feb. 1954.
[12] L. C. Freeman, “A Set of Measures of Centrality based on Betweenness,” Sociometry, vol. 40, no. 1, pp. 35-41, 1977.
[13] John Scott, Social Network Analysis: A Handbook, 2nd edition, London, Sage Publications, 2000.
[14] L. C. Freeman, Centrality in Social Networks Conceptual Clarification, Social Networks, no. 1, pp. 215-239, 1979.
[15] T. Hu, F. Hong, X. Zhang, and Z. Guo, “BiBUBBLE: Social-based Forwarding in Pocket Switched Networks,” in Proc. Ubiquitous Intelligence & Computing and 7th International Conference on Autonomic & Trusted Computing (UIC/ATC’10), Xian, Shaanxi, China, pp. 195-199, Oct. 26-29, 2010.
[16] C. E. Perkins and E. M. Royer, “Ad-hoc On-demand Distance Vector Routing,” in Proc. IEEE WMCSA, pp. 90-100, Feb. 1999.
[17] E. Royer and C. K. Toh, “A Review of Current Routing Protocols for Ad Hoc Mobile Wireless Networks,” IEEE Personal Communications Magazine, pp. 46-55, Apr. 1999.
[18] C. E. Perkins and E. M. Royer, “Highly Dynamic Destination Sequenced Distance Vector Routing (DSDV) for Mobile Computer,” in Proc. ACM Special Interest Group on Data Communication, London, UK, pp. 234-244, Sep. 1994.
[19] S. Corson and J. Macker, “Mobile Ad hoc Networking (MANET): Routing Protocol Performance Issues and Evaluation Considerations,” RFC2501. Retrieved: http://www.faqs.org/rfcs/rfc2501.html, http://www.ietf.org/rfc/rfc2501.txt, Jan. 1999.
[20] D. B. Jhonson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless Networks,” Mobile Computing, Kluwere Academic Publishers, pp. 153-181, 1996.
[21] Z. Hass and M. Pearlman, “The Performance of Query Control Schemes for the Zone Routing Protocol,” in Proc. ACM SIGCOMM, pp. 167-177, Aug. 1998.
[22] “The Network Simulator ns 2.35.” Retrieved:
http://www.isi.edu/nsnam/ns/index.html, Nov. 2011.
[23] C. Siva Ram Murthy and B. S. Manoj, Ad Hoc Wireless Networks: Architectures and Protocols, Prentice Hall PTR, 2004.
zh_TW