Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 BK離子通道與海馬迴粒細胞死亡的相關性
The relationship between BK channel alternative splicing and granule cell death in the hippocampus作者 吳君逸
Wu, Jun Yi貢獻者 賴桂珍
Lai, Guey Jen
吳君逸
Wu, Jun Yi關鍵詞 BK離子通道
海馬迴
齒狀回
BK
Hippocampus
Dentate gyrus日期 2011 上傳時間 30-Oct-2012 15:22:10 (UTC+8) 摘要 海馬迴不僅在學習與記憶中扮演重要的角色,在許多神經退化性疾病中亦佔有重要的地位。海馬迴的齒迴內側區是哺乳動物大腦中成體幹細胞主要來源區域之一,其所新生的海馬迴粒細胞會往上遷移至海馬迴粒細胞層並與固有神經細胞形成功能性連結。 過去的研究發現太少或過量的壓力荷爾蒙均會造成海馬迴粒細胞的死亡,而一定量濃度的皮質固醇對於維持海馬迴粒細胞的生存亦扮演非常重要的角色。在摘除兩側的腎上腺後,海馬迴粒細胞在幾週後會逐漸死亡且造成認知功能的缺損。本實驗即利用雙側腎上腺摘除術建立動物模式,企圖了解海馬迴粒細胞在凋亡的過程中所產生的生理層面的改變。 壓力荷爾蒙(包含皮質固醇,在老鼠稱為corticosterone,在人類稱為cortisol)為腎上腺皮質分泌激素,已知會參與並調控BK 離子通道的選擇性剪接。BK離子通道的孔道形成α次單元由單一基因 (Slo) 負責轉錄,含有STREX外顯子的剪接變異體之α次單元藉由加速神經細胞的再極化,增強過極化電位以及促進鈉離子通道自去活化狀態中回復可造成神經細胞重複激發,而先前的研究已發現過度的激發會對神經細胞產生興奮性毒殺作用。本實驗即探討BK 鉀離子通道選擇性剪接在海馬迴粒細胞凋亡的過程中所扮演的角色。 實驗結果發現,與對照組相比,雙側腎上腺摘除的老鼠海馬迴細胞中含有STREX外顯子的剪接變異體在mRNA含量上確實有改變,而BK 鉀離子通道蛋白質含量亦有所變化。由上述結果推測,含有STREX外顯子的剪接變異體含量可能與海馬迴粒細胞的凋亡機制有關。
The hippocampus is a brain region central to learning and memory and is a key target of many neurological diseases that have dramatic cognitive consequences, including Alzheimer’s and other forms of dementia, stroke, epilepsy, and chronic stress. Hippocampal granule cells are one of the two cell pools that contain newborn neurons continuously generated from the subgranular zone in adult mammalian brains. The newborn neurons will migrate to the granule cell layer and integrate into preexisting neuron network. Previous studies have indicated that both an excessive and insufficient levels of stress hormones can lead to neuron death. Corticosterone, an adrenal stress hormone, is essential for the survival of granule cells. Bilateral removal of adrenal glands leads to extensive granule cell death over a period of several weeks and gradually causes cognitive deficits. To understand the mechanisms underlying the granule cell death in the hippocampal formation, adrenalectomy (ADX, removal of adrenal glands) was used to specifically eliminate granule cells in the hippocampus, and the subsequent physiological changes in the hippocampal neurons including dentate granule cells are investigated. Stress hormones (corticosterone in rats and cortisol in human) , secreted from the adrenal cortex regulate the alternative splicing of BK channels (big potassium, calcium-voltage activated potassium channels) in adrenal medulla. An inclusion of STREX (stress axis-regulated exon) exon in pore-forming α subunit encoded by Slo gene promotes repetitive firing by speeding action potential repolarization and augmenting the afterhyperpolarization, as well as facilitating sodium channels de-inactivation. In the present study, the role of BK channel alternative splicing in the ADX-induced granule cell death in the hippocampus was explored. The results indicate that BK channel alternative splicing was regulated by stress hormones in the hippocampus including dentate gyrus. The expression patterns of STREX variant in hippocampus were altered after granule cells death induced by ADX, whilst the expression of total slo gene was changes only in translational level. These observations suggest that the alternation in STREX abundance might be involved in the induction of dentate granule cell death.參考文獻 1.Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3-22. 2.Butler A, Tsunoda S, McCobb DP, Wei A, Salkoff L (1993) mSlo, a complex mouse gene encoding "maxi" calcium- activated potassium channels. Science 261:221-224. 3.Cameron HA, Gould E (1994) Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 61:203-209. 4.Cui J, Yang H, Lee US (2009) Molecular mechanisms of BK channel activation. Cell Mol Life Sci 66:852-875. 5.De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M (1998) Brain corticosteroid receptor balance in health and disease. Endocrine reviews 19:269-301. 6.Du W, Bautista JF, Yang H, Diez-Sampedro A, You SA, Wang L, Kotagal P, Luders HO, Shi J, Cui J, Richerson GB, Wang QK (2005) Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 37:733-738. 7.Faber ES, Sah P (2003) Calcium-activated potassium channels: multiple contributions to neuronal function. Neuroscientist 9:181-194. 8.Gage FH (2000) Mammalian neural stem cells. Science 287:1433-1438. 9.Gotz J, Ittner LM (2008) Animal models of Alzheimer`s disease and frontotemporal dementia. Nat Rev Neurosci 9:532-544. 10.Gutierrez R (2003) The GABAergic phenotype of the "glutamatergic" granule cells of the dentate gyrus. Prog Neurobiol 71:337-358. 11.Hagihara H, Toyama K, Yamasaki N, Miyakawa T (2009) Dissection of hippocampal dentate gyrus from adult mouse. J Vis Exp. 12.Hernandez-Rabaza V, Hontecillas-Prieto L, Velazquez- Sanchez C, Ferragud A, Perez-Villaba A, Arcusa A, Barcia JA, Trejo JL, Canales JJ (2008) The hippocampal dentate gyrus is essential for generating contextual memories of fear and drug-induced reward. Neurobiol Learn Mem 90:553- 559. 13.Holmes MC, Yau JL, French KL, Seckl JR (1995) The effect of adrenalectomy on 5-hydroxytryptamine and corticosteroid receptor subtype messenger RNA expression in rat hippocampus. Neuroscience 64:327-337. 14.Hu Z, Yuri K, Ozawa H, Lu H, Kawata M (1997) The in vivo time course for elimination of adrenalectomy-induced apoptotic profiles from the granule cell layer of the rat hippocampus. J Neurosci 17:3981-3989. 15.Jaarsma D, Postema F, Korf J (1992) Time course and distribution of neuronal degeneration in the dentate gyrus of rat after adrenalectomy: a silver impregnation study. Hippocampus 2:143-150. 16.Joels M (2007) Role of corticosteroid hormones in the dentate gyrus. Prog Brain Res 163:355-370. 17.Joels M, Stienstra C, Karten Y (2001) Effect of adrenalectomy on membrane properties and synaptic potentials in rat dentate granule cells. J Neurophysiol 85:699-707. 18.Joels M, Karst H, Krugers HJ, Lucassen PJ (2007) Chronic stress: implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol 28:72-96. 19.Joels M, Karst H, DeRijk R, de Kloet ER (2008) The coming out of the brain mineralocorticoid receptor. Trends Neurosci 31:1-7. 20.Karst H, Joels M (2001) Calcium currents in rat dentate granule cells are altered after adrenalectomy. Eur J Neurosci 14:503-512. 21.Kesner RP (2007) A behavioral analysis of dentate gyrus function. Prog Brain Res 163:567-576. 22.Knaus HG, Schwarzer C, Koch RO, Eberhart A, Kaczorowski GJ, Glossmann H, Wunder F, Pongs O, Garcia ML, Sperk G (1996) Distribution of high-conductance Ca(2+)-activated K+ channels in rat brain: targeting to axons and nerve terminals. J Neurosci 16:955-963. 23.Krugers HJ, van der Linden S, van Olst E, Alfarez DN, Maslam S, Lucassen PJ, Joels M (2007) Dissociation between apoptosis, neurogenesis, and synaptic potentiation in the dentate gyrus of adrenalectomized rats. Synapse 61:221-230. 24.Kumar P, Kalonia H, Kumar A (2010) Huntington`s disease: pathogenesis to animal models. Pharmacol Rep 62:1-14. 25.Lai GJ, McCobb DP (2002) Opposing actions of adrenal androgens and glucocorticoids on alternative splicing of Slo potassium channels in bovine chromaffin cells. Proc Natl Acad Sci U S A 99:7722-7727. 26.Lai GJ, McCobb DP (2006) Regulation of alternative splicing of Slo K+ channels in adrenal and pituitary during the stress-hyporesponsive period of rat development. Endocrinology 147:3961-3967. 27.Lee I, Kesner RP (2004) Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear-conditioning. Hippocampus 14:301-310. 28.Lees AJ, Hardy J, Revesz T (2009) Parkinson`s disease. Lancet 373:2055-2066. 29.Lovell PV, McCobb DP (2001) Pituitary control of BK potassium channel function and intrinsic firing properties of adrenal chromaffin cells. J Neurosci 21:3429-3442. 30.Lu R, Alioua A, Kumar Y, Eghbali M, Stefani E, Toro L (2006) MaxiK channel partners: physiological impact. J Physiol 570:65-72. 31.Maclennan KM, Zheng Y, Sheard PW, Williams SM, Darlington CL, Smith PF (2003) Adrenalectomy-induced cell death in the dentate gyrus: further characterisation using TUNEL and effects of the Ginkgo biloba extract, EGb 761, and ginkgolide B. Hippocampus 13:212-225. 32.Mahmoud SF, Bezzerides AL, Riba R, Lai GJ, Lovell PV, Hara Y, McCobb DP (2002) Accurate quantitative RT-PCR for relative expression of Slo splice variants. J Neurosci Methods 115:189-198. 33.McNeill TH, Masters JN, Finch CE (1991) Effect of chronic adrenalectomy on neuron loss and distribution of sulfated glycoprotein-2 in the dentate gyrus of prepubertal rats. Exp Neurol 111:140-144. 34.Pacheco Otalora LF, Hernandez EF, Arshadmansab MF, Francisco S, Willis M, Ermolinsky B, Zarei M, Knaus HG, Garrido-Sanabria ER (2008) Down-regulation of BK channel expression in the pilocarpine model of temporal lobe epilepsy. Brain Res 1200:116-131. 35.Paskitti ME, McCreary BJ, Herman JP (2000) Stress regulation of adrenocorticosteroid receptor gene transcription and mRNA expression in rat hippocampus: time-course analysis. Brain Res Mol Brain Res 80:142-152. 36.Rolls ET, Kesner RP (2006) A computational theory of hippocampal function, and empirical tests of the theory. Prog Neurobiol 79:1-48. 37.Roy EJ, Lynn DM, Bemm CW (1990) Individual variations in hippocampal dentate degeneration following adrenalectomy. Behavioral and neural biology 54:330-336. 38.Schreiber M, Salkoff L (1997) A novel calcium-sensing domain in the BK channel. Biophysical journal 73:1355- 1363. 39.Shipston MJ (2001) Alternative splicing of potassium channels: a dynamic switch of cellular excitability. Trends in cell biology 11:353-358. 40.Sloviter RS, Sollas AL, Dean E, Neubort S (1993) Adrenalectomy-induced granule cell degeneration in the rat hippocampal dentate gyrus: characterization of an in vivo model of controlled neuronal death. J Comp Neurol 330:324-336. 41.Sloviter RS, Valiquette G, Abrams GM, Ronk EC, Sollas AL, Paul LA, Neubort S (1989) Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science 243:535-538. 42.Spanswick SC, Lehmann H, Sutherland RJ (2011a) A novel animal model of hippocampal cognitive deficits, slow neurodegeneration, and neuroregeneration. Journal of biomedicine & biotechnology 2011:527201. 43.Spanswick SC, Epp JR, Sutherland RJ (2011b) Time-course of hippocampal granule cell degeneration and changes in adult neurogenesis after adrenalectomy in rats. Neuroscience 190:166-176. 44.Stienstra CM, Joels M (2000) Effect of corticosteroid treatment in vitro on adrenalectomy-induced impairment of synaptic transmission in the rat dentate gyrus. J Neuroendocrinol 12:199-205. 45.Stienstra CM, Van Der Graaf F, Bosma A, Karten YJ, Hesen W, Joels M (1998) Synaptic transmission in the rat dentate gyrus after adrenalectomy. Neuroscience 85:1061- 1071. 46.Vreugdenhil E, de Kloet ER, Schaaf M, Datson NA (2001) Genetic dissection of corticosterone receptor function in the rat hippocampus. Eur Neuropsychopharmacol 11:423- 430. 47.Xavier GF, Costa VC (2009) Dentate gyrus and spatial behaviour. Prog Neuropsychopharmacol Biol Psychiatry 33:762-773. 48.Xie J, McCobb DP (1998) Control of alternative splicing of potassium channels by stress hormones. Science 280:443-446. 49.Yu JY, Upadhyaya AB, Atkinson NS (2006) Tissue-specific alternative splicing of BK channel transcripts in Drosophila. Genes Brain Behav 5:329-339. 50.Zarei MM, Zhu N, Alioua A, Eghbali M, Stefani E, Toro L (2001) A novel MaxiK splice variant exhibits dominant- negative properties for surface expression. J Biol Chem 276:16232-16239. 51.Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645-660. 描述 碩士
國立政治大學
神經科學研究所
97754001
100資料來源 http://thesis.lib.nccu.edu.tw/record/#G0097754001 資料類型 thesis dc.contributor.advisor 賴桂珍 zh_TW dc.contributor.advisor Lai, Guey Jen en_US dc.contributor.author (Authors) 吳君逸 zh_TW dc.contributor.author (Authors) Wu, Jun Yi en_US dc.creator (作者) 吳君逸 zh_TW dc.creator (作者) Wu, Jun Yi en_US dc.date (日期) 2011 en_US dc.date.accessioned 30-Oct-2012 15:22:10 (UTC+8) - dc.date.available 30-Oct-2012 15:22:10 (UTC+8) - dc.date.issued (上傳時間) 30-Oct-2012 15:22:10 (UTC+8) - dc.identifier (Other Identifiers) G0097754001 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/55036 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 神經科學研究所 zh_TW dc.description (描述) 97754001 zh_TW dc.description (描述) 100 zh_TW dc.description.abstract (摘要) 海馬迴不僅在學習與記憶中扮演重要的角色,在許多神經退化性疾病中亦佔有重要的地位。海馬迴的齒迴內側區是哺乳動物大腦中成體幹細胞主要來源區域之一,其所新生的海馬迴粒細胞會往上遷移至海馬迴粒細胞層並與固有神經細胞形成功能性連結。 過去的研究發現太少或過量的壓力荷爾蒙均會造成海馬迴粒細胞的死亡,而一定量濃度的皮質固醇對於維持海馬迴粒細胞的生存亦扮演非常重要的角色。在摘除兩側的腎上腺後,海馬迴粒細胞在幾週後會逐漸死亡且造成認知功能的缺損。本實驗即利用雙側腎上腺摘除術建立動物模式,企圖了解海馬迴粒細胞在凋亡的過程中所產生的生理層面的改變。 壓力荷爾蒙(包含皮質固醇,在老鼠稱為corticosterone,在人類稱為cortisol)為腎上腺皮質分泌激素,已知會參與並調控BK 離子通道的選擇性剪接。BK離子通道的孔道形成α次單元由單一基因 (Slo) 負責轉錄,含有STREX外顯子的剪接變異體之α次單元藉由加速神經細胞的再極化,增強過極化電位以及促進鈉離子通道自去活化狀態中回復可造成神經細胞重複激發,而先前的研究已發現過度的激發會對神經細胞產生興奮性毒殺作用。本實驗即探討BK 鉀離子通道選擇性剪接在海馬迴粒細胞凋亡的過程中所扮演的角色。 實驗結果發現,與對照組相比,雙側腎上腺摘除的老鼠海馬迴細胞中含有STREX外顯子的剪接變異體在mRNA含量上確實有改變,而BK 鉀離子通道蛋白質含量亦有所變化。由上述結果推測,含有STREX外顯子的剪接變異體含量可能與海馬迴粒細胞的凋亡機制有關。 zh_TW dc.description.abstract (摘要) The hippocampus is a brain region central to learning and memory and is a key target of many neurological diseases that have dramatic cognitive consequences, including Alzheimer’s and other forms of dementia, stroke, epilepsy, and chronic stress. Hippocampal granule cells are one of the two cell pools that contain newborn neurons continuously generated from the subgranular zone in adult mammalian brains. The newborn neurons will migrate to the granule cell layer and integrate into preexisting neuron network. Previous studies have indicated that both an excessive and insufficient levels of stress hormones can lead to neuron death. Corticosterone, an adrenal stress hormone, is essential for the survival of granule cells. Bilateral removal of adrenal glands leads to extensive granule cell death over a period of several weeks and gradually causes cognitive deficits. To understand the mechanisms underlying the granule cell death in the hippocampal formation, adrenalectomy (ADX, removal of adrenal glands) was used to specifically eliminate granule cells in the hippocampus, and the subsequent physiological changes in the hippocampal neurons including dentate granule cells are investigated. Stress hormones (corticosterone in rats and cortisol in human) , secreted from the adrenal cortex regulate the alternative splicing of BK channels (big potassium, calcium-voltage activated potassium channels) in adrenal medulla. An inclusion of STREX (stress axis-regulated exon) exon in pore-forming α subunit encoded by Slo gene promotes repetitive firing by speeding action potential repolarization and augmenting the afterhyperpolarization, as well as facilitating sodium channels de-inactivation. In the present study, the role of BK channel alternative splicing in the ADX-induced granule cell death in the hippocampus was explored. The results indicate that BK channel alternative splicing was regulated by stress hormones in the hippocampus including dentate gyrus. The expression patterns of STREX variant in hippocampus were altered after granule cells death induced by ADX, whilst the expression of total slo gene was changes only in translational level. These observations suggest that the alternation in STREX abundance might be involved in the induction of dentate granule cell death. en_US dc.description.tableofcontents 中文摘要...I Abstract...II Table of contents...IV Figures...VI Abbreviations...VII 1. Introduction...1 1.1 The dentate gyrus...1 1.2 Dentate granule cells...1 1.3 Corticosterone and dentate granule cells...2 1.4 Corticosterone receptors in the brain...3 1.5 The mechanisms of adrenalectomy-induced dentate granule cell death...4 1.6 Big conductance voltage-sensitive and Ca2+-activated potassium channel in the brain...5 1.7 BK channel alternative splicing is regulated by corticosterone...7 1.8 Hypothesis in this study...7 2. Materials and Methods...9 2.1 Animals and Surgery...9 2.2 Samples collection...11 2.3 Total RNA extraction and RT-PCR...12 2.3.1 STREX/ZERO splice variants amplification...12 2.3.2 Total Slo gene transcripts amplification...14 2.4 Sample preparation and immunohistochemistry...15 2.5 Primary cell culture and immunocytochemistry...18 2.6 ELISA...20 2.7 Data analysis... 21 3. Results...22 3.1 Attenuated body-weight gain and low plasma CORT levels were observed after ADX...22 3.2 Quantitative Measurement of the Relative Abundance of STREX and ZERO Variants...26 3.3 Relative abundance of STREX splice variant and total Slo gene transcripts in left hippocampi was not changed in prolonged ADX rats...28 3.4 The alternation of STREX splice variant and total Slo transcripts was different in DG and left hippocampi after ADX...30 3.5 The expression of BK channel α subunit protein was increased after ADX...33 4. Discussion...36 5. Conclusion…40 6. References…41 zh_TW dc.language.iso en_US - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0097754001 en_US dc.subject (關鍵詞) BK離子通道 zh_TW dc.subject (關鍵詞) 海馬迴 zh_TW dc.subject (關鍵詞) 齒狀回 zh_TW dc.subject (關鍵詞) BK en_US dc.subject (關鍵詞) Hippocampus en_US dc.subject (關鍵詞) Dentate gyrus en_US dc.title (題名) BK離子通道與海馬迴粒細胞死亡的相關性 zh_TW dc.title (題名) The relationship between BK channel alternative splicing and granule cell death in the hippocampus en_US dc.type (資料類型) thesis en dc.relation.reference (參考文獻) 1.Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3-22. 2.Butler A, Tsunoda S, McCobb DP, Wei A, Salkoff L (1993) mSlo, a complex mouse gene encoding "maxi" calcium- activated potassium channels. Science 261:221-224. 3.Cameron HA, Gould E (1994) Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 61:203-209. 4.Cui J, Yang H, Lee US (2009) Molecular mechanisms of BK channel activation. Cell Mol Life Sci 66:852-875. 5.De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M (1998) Brain corticosteroid receptor balance in health and disease. Endocrine reviews 19:269-301. 6.Du W, Bautista JF, Yang H, Diez-Sampedro A, You SA, Wang L, Kotagal P, Luders HO, Shi J, Cui J, Richerson GB, Wang QK (2005) Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 37:733-738. 7.Faber ES, Sah P (2003) Calcium-activated potassium channels: multiple contributions to neuronal function. Neuroscientist 9:181-194. 8.Gage FH (2000) Mammalian neural stem cells. Science 287:1433-1438. 9.Gotz J, Ittner LM (2008) Animal models of Alzheimer`s disease and frontotemporal dementia. Nat Rev Neurosci 9:532-544. 10.Gutierrez R (2003) The GABAergic phenotype of the "glutamatergic" granule cells of the dentate gyrus. Prog Neurobiol 71:337-358. 11.Hagihara H, Toyama K, Yamasaki N, Miyakawa T (2009) Dissection of hippocampal dentate gyrus from adult mouse. J Vis Exp. 12.Hernandez-Rabaza V, Hontecillas-Prieto L, Velazquez- Sanchez C, Ferragud A, Perez-Villaba A, Arcusa A, Barcia JA, Trejo JL, Canales JJ (2008) The hippocampal dentate gyrus is essential for generating contextual memories of fear and drug-induced reward. Neurobiol Learn Mem 90:553- 559. 13.Holmes MC, Yau JL, French KL, Seckl JR (1995) The effect of adrenalectomy on 5-hydroxytryptamine and corticosteroid receptor subtype messenger RNA expression in rat hippocampus. Neuroscience 64:327-337. 14.Hu Z, Yuri K, Ozawa H, Lu H, Kawata M (1997) The in vivo time course for elimination of adrenalectomy-induced apoptotic profiles from the granule cell layer of the rat hippocampus. J Neurosci 17:3981-3989. 15.Jaarsma D, Postema F, Korf J (1992) Time course and distribution of neuronal degeneration in the dentate gyrus of rat after adrenalectomy: a silver impregnation study. Hippocampus 2:143-150. 16.Joels M (2007) Role of corticosteroid hormones in the dentate gyrus. Prog Brain Res 163:355-370. 17.Joels M, Stienstra C, Karten Y (2001) Effect of adrenalectomy on membrane properties and synaptic potentials in rat dentate granule cells. J Neurophysiol 85:699-707. 18.Joels M, Karst H, Krugers HJ, Lucassen PJ (2007) Chronic stress: implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol 28:72-96. 19.Joels M, Karst H, DeRijk R, de Kloet ER (2008) The coming out of the brain mineralocorticoid receptor. Trends Neurosci 31:1-7. 20.Karst H, Joels M (2001) Calcium currents in rat dentate granule cells are altered after adrenalectomy. Eur J Neurosci 14:503-512. 21.Kesner RP (2007) A behavioral analysis of dentate gyrus function. Prog Brain Res 163:567-576. 22.Knaus HG, Schwarzer C, Koch RO, Eberhart A, Kaczorowski GJ, Glossmann H, Wunder F, Pongs O, Garcia ML, Sperk G (1996) Distribution of high-conductance Ca(2+)-activated K+ channels in rat brain: targeting to axons and nerve terminals. J Neurosci 16:955-963. 23.Krugers HJ, van der Linden S, van Olst E, Alfarez DN, Maslam S, Lucassen PJ, Joels M (2007) Dissociation between apoptosis, neurogenesis, and synaptic potentiation in the dentate gyrus of adrenalectomized rats. Synapse 61:221-230. 24.Kumar P, Kalonia H, Kumar A (2010) Huntington`s disease: pathogenesis to animal models. Pharmacol Rep 62:1-14. 25.Lai GJ, McCobb DP (2002) Opposing actions of adrenal androgens and glucocorticoids on alternative splicing of Slo potassium channels in bovine chromaffin cells. Proc Natl Acad Sci U S A 99:7722-7727. 26.Lai GJ, McCobb DP (2006) Regulation of alternative splicing of Slo K+ channels in adrenal and pituitary during the stress-hyporesponsive period of rat development. Endocrinology 147:3961-3967. 27.Lee I, Kesner RP (2004) Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear-conditioning. Hippocampus 14:301-310. 28.Lees AJ, Hardy J, Revesz T (2009) Parkinson`s disease. Lancet 373:2055-2066. 29.Lovell PV, McCobb DP (2001) Pituitary control of BK potassium channel function and intrinsic firing properties of adrenal chromaffin cells. J Neurosci 21:3429-3442. 30.Lu R, Alioua A, Kumar Y, Eghbali M, Stefani E, Toro L (2006) MaxiK channel partners: physiological impact. J Physiol 570:65-72. 31.Maclennan KM, Zheng Y, Sheard PW, Williams SM, Darlington CL, Smith PF (2003) Adrenalectomy-induced cell death in the dentate gyrus: further characterisation using TUNEL and effects of the Ginkgo biloba extract, EGb 761, and ginkgolide B. Hippocampus 13:212-225. 32.Mahmoud SF, Bezzerides AL, Riba R, Lai GJ, Lovell PV, Hara Y, McCobb DP (2002) Accurate quantitative RT-PCR for relative expression of Slo splice variants. J Neurosci Methods 115:189-198. 33.McNeill TH, Masters JN, Finch CE (1991) Effect of chronic adrenalectomy on neuron loss and distribution of sulfated glycoprotein-2 in the dentate gyrus of prepubertal rats. Exp Neurol 111:140-144. 34.Pacheco Otalora LF, Hernandez EF, Arshadmansab MF, Francisco S, Willis M, Ermolinsky B, Zarei M, Knaus HG, Garrido-Sanabria ER (2008) Down-regulation of BK channel expression in the pilocarpine model of temporal lobe epilepsy. Brain Res 1200:116-131. 35.Paskitti ME, McCreary BJ, Herman JP (2000) Stress regulation of adrenocorticosteroid receptor gene transcription and mRNA expression in rat hippocampus: time-course analysis. Brain Res Mol Brain Res 80:142-152. 36.Rolls ET, Kesner RP (2006) A computational theory of hippocampal function, and empirical tests of the theory. Prog Neurobiol 79:1-48. 37.Roy EJ, Lynn DM, Bemm CW (1990) Individual variations in hippocampal dentate degeneration following adrenalectomy. Behavioral and neural biology 54:330-336. 38.Schreiber M, Salkoff L (1997) A novel calcium-sensing domain in the BK channel. Biophysical journal 73:1355- 1363. 39.Shipston MJ (2001) Alternative splicing of potassium channels: a dynamic switch of cellular excitability. Trends in cell biology 11:353-358. 40.Sloviter RS, Sollas AL, Dean E, Neubort S (1993) Adrenalectomy-induced granule cell degeneration in the rat hippocampal dentate gyrus: characterization of an in vivo model of controlled neuronal death. J Comp Neurol 330:324-336. 41.Sloviter RS, Valiquette G, Abrams GM, Ronk EC, Sollas AL, Paul LA, Neubort S (1989) Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science 243:535-538. 42.Spanswick SC, Lehmann H, Sutherland RJ (2011a) A novel animal model of hippocampal cognitive deficits, slow neurodegeneration, and neuroregeneration. Journal of biomedicine & biotechnology 2011:527201. 43.Spanswick SC, Epp JR, Sutherland RJ (2011b) Time-course of hippocampal granule cell degeneration and changes in adult neurogenesis after adrenalectomy in rats. Neuroscience 190:166-176. 44.Stienstra CM, Joels M (2000) Effect of corticosteroid treatment in vitro on adrenalectomy-induced impairment of synaptic transmission in the rat dentate gyrus. J Neuroendocrinol 12:199-205. 45.Stienstra CM, Van Der Graaf F, Bosma A, Karten YJ, Hesen W, Joels M (1998) Synaptic transmission in the rat dentate gyrus after adrenalectomy. Neuroscience 85:1061- 1071. 46.Vreugdenhil E, de Kloet ER, Schaaf M, Datson NA (2001) Genetic dissection of corticosterone receptor function in the rat hippocampus. Eur Neuropsychopharmacol 11:423- 430. 47.Xavier GF, Costa VC (2009) Dentate gyrus and spatial behaviour. Prog Neuropsychopharmacol Biol Psychiatry 33:762-773. 48.Xie J, McCobb DP (1998) Control of alternative splicing of potassium channels by stress hormones. Science 280:443-446. 49.Yu JY, Upadhyaya AB, Atkinson NS (2006) Tissue-specific alternative splicing of BK channel transcripts in Drosophila. Genes Brain Behav 5:329-339. 50.Zarei MM, Zhu N, Alioua A, Eghbali M, Stefani E, Toro L (2001) A novel MaxiK splice variant exhibits dominant- negative properties for surface expression. J Biol Chem 276:16232-16239. 51.Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645-660. zh_TW