Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 厚尾分配在財務與精算領域之應用
Applications of Heavy-Tailed distributions in finance and actuarial science
作者 劉議謙
Liu, I Chien
貢獻者 黃泓智
Huang, Hong Chih
劉議謙
Liu, I Chien
關鍵詞 隨機死亡率模型
厚尾分配
長壽交換
百慕達選擇權
多元Lévy分配
低偏差網狀法
Stochastic Mortality Models
Heavy-Tailed Distributions
Longevity Swaps
Bermudan Options
Multivariate Lévy Distributions
Low Discrepancy Mesh
日期 2012
上傳時間 1-Nov-2012 13:51:16 (UTC+8)
摘要 本篇論文將厚尾分配(Heavy-Tailed Distribution)應用在財務及保險精算上。本研究主要有三個部分:第一部份是用厚尾分配來重新建構Lee-Carter模型(1992),發現改良後的Lee-Carter模型其配適與預測效果都較準確。第二部分是將厚尾分配建構於具有世代因子(Cohort Factor)的Renshaw and Haberman模型(2006)中,其配適及預測效果皆有顯著改善,此外,針對英格蘭及威爾斯(England and Wales)訂價長壽交換(Longevity Swaps),結果顯示此模型可以支付較少的長壽交換之保費以及避免低估損失準備金。第三部分是財務上的應用,利用Schmidt等人(2006)提出的多元仿射廣義雙曲線分配(Multivariate Affine Generalized Hyperbolic Distributions; MAGH)於Boyle等人(2003)提出的低偏差網狀法(Low Discrepancy Mesh; LDM)來定價多維度的百慕達選擇權。理論上,LDM法的數值會高於Longstaff and Schwartz(2001)提出的最小平方法(Least Square Method; LSM)的數值,而數值分析結果皆一致顯示此性質,藉由此特性,我們可知道多維度之百慕達選擇權的真值落於此範圍之間。
The thesis focus on the application of heavy-tailed distributions in finance and actuarial science. We provide three applications in this thesis. The first application is that we refine the Lee-Carter model (1992) with heavy-tailed distributions. The results show that the Lee-Carter model with heavy-tailed distributions provide better fitting and prediction. The second application is that we also model the error term of Renshaw and Haberman model (2006) using heavy-tailed distributions and provide an iterative fitting algorithm to generate maximum likelihood estimates under the Cox regression model. Using the RH model with non-Gaussian innovations can pay lower premiums of longevity swaps and avoid the underestimation of loss reserves for England and Wales. The third application is that we use multivariate affine generalized hyperbolic (MAGH) distributions introduced by Schmidt et al. (2006) and low discrepancy mesh (LDM) method introduced by Boyle et al. (2003), to show how to price multidimensional Bermudan derivatives. In addition, the LDM estimates are higher than the corresponding estimates from the Least Square Method (LSM) of Longstaff and Schwartz (2001). This is consistent with the property that the LDM estimate is high bias while the LSM estimate is low bias. This property also ensures that the true option value will lie between these two bounds.
參考文獻 Aas, K., Haff, I. H., 2006. The Generalized Hyperbolic Skew Student’s t-distribution. Journal of Financial Econometrics 4, 275-309.
Akaike, H, 1974. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control AC-19, 716-723.
Amin, K., 1993. Jump Diffusion Option Valuation in Discrete Time. Journal of Finance 48, 1833-1863.
Anderson, T. W., 1962. On the Distribution of the Two-Sample Cramér-Von Mises Criterion. The Annals of Mathematical Statistics 33, 1148-1159.
Barbarin J., 2008. Heath-Jarrow-Morton Modelling of Longevity Bonds and the Risk Minimization of Life Insurance Portfolios. Insurance Mathematics and Economics 43, 41-55.
Barndorff-Nielsen, O. E., 1977. Exponentially decreasing distributions for the logarithm of particle size. Proceedings of the Royal Society of London 353, 409-419.
Barndorff-Nielsen, O. E., 1978. Hyperbolic distributions and distributions on hyperbolae. Scandinavian Journal of Statistics 5, 151-157.
Barndorff-Nielsen, O. E., 1995. Normal Inverse Gaussian Processes and the Modeling of Stock Returns. Technical Report 300, Department of Theoretical Statistics, Institute of Mathematics.
Barndorff-Nielsen , O. E, Pedersen, J., Sato, K. I., 2001. Multivariate Subordination Self-Decomposability and Stability. Advance Application Probability 33, 160-187.


Barndorff-Nielsen, O. E., Shephard, N., 2001. Non-Gaussian Ornstein-Uhlenbeck-Based Models and Some of Their Uses in Financial Economics. Journal of the Royal Statistical Society B 63, 167-241
Bauer, D., 2006. An Arbitrage-Free Family of Longevity Bonds, Discussion Paper, Ulm University.
Biffis, E., 2005. Affine Processes for Dynamic Mortality and Actuarial Valuations. Insurance: Mathematics and economics 37, 443-468.
Biffis, E., Blake, D., Pitotti, L., Sun, A., 2011. The Cost of Counterparty Risk and Collateralization in Longevity Swaps, Pensions Institute Discussion Paper PI-1107, June.
Biffis, E., Denuit, M., Devolder, P., 2010. Stochastic Mortality under Measure Changes. Scandinavian Actuarial Journal 4, 284-311.
Bishop, C. M., 2006. Pattern Recognition and Machine Learning. Springer.
Blake, D., Burrows, W., 2001. Survivor Bonds: Helping to Hedge Mortality Risk. Journal of Risk and Insurance 68, 339-348.
Blake, D., Cairns, A. J. G., Coughlan, G., Dowd, K., MacMinn, R., 2012. The New Life Market, Discussion Paper.
Blasild, P., Jensen, J. L., 1981. Multivariate Distributions of Hyperbolic Type. In Statistical Distributions in Scientific Work-Proceedings of theNATO Advanced Study Institute held at the Università degli studi di Trieste 4, 45-66.
Bølviken, E., Benth, F. E., 2000. Quantification of Risk in Norwegian Stocks via the Normal Inverse Gaussian Distribution. Proceedings of the AFIA 2000 Colloquium, Tromsø, Norway, 87-98.
Boyle, P. P., Kolkiewicz, A. W., Tan, K. S., 2003. Pricing American Style Options Using Low Discrepancy Mesh Method. Submitted for Publication.
Broadie, M., Glasserman, P., 2004. A Stochastic Mesh Method for Pricing High-Dimensional American Options. Journal of Computational Finance 7, 35-72.
Brouhns, N., Denuit, M., Vermunt, J. K., 2002. A Poisson Log-Bilinear Regression Approach to the Construction of Projected Life Tables. Insurance: Mathematics and Economics 31, 373-393.
Cairns, A. J. G., Blake, D., Dowd, K., 2006. A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration. Journal of Risk and Insurance 73, 687-718.
Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Khalaf-Allah, M., 2010. A Framework for Forecasting Mortality Rates with an Application to Six Stochastic Mortality Models. Pensions Institute Discussion Paper PI-0801, March.
Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Ong, A., Balevich, I., 2009. A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States. North American Actuarial Journal 13, 1-35.
Carr, P., Geman, H., Madan, D. P., Yor, M., 2002. The Fine Structure of Asset Returns: An Empirical Investigation. Journal of Business 75, 305-332.
Carr, P., Madan, D. P., 1999. Option Valuation Using the Fast Fourier transform. Journal of Computational Finance 2, 61-73.
Chen, H., Cox, S. H., 2009. Modeling Mortality with Jumps: Applications to Mortality Securitization. Journal of Risk and Insurance 76, 727-751.
Chernobai, A. S., Rachev, S. T., Fabozzi, F. J., 2007. Operational Risk: A Guide to Basel II Capital Requirements, Models, and Analysis. John Wiley & Sons, Inc..
Clark, P. K., 1973. A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices. Journal of the Econometric Society 41, 135-156.
Cont, R., Tankov, P., 2004. Financial Modelling with Jump Processes. Chapman and Hall/CRC Financial Mathematics Series.
Cox, D. R., 1955. Some Statistical Methods Connected with Series of Events (with Discussion). Journal of the Royal Statistical Society, Series B 17, 129-164.
Cox, S. H., Lin, Y., Wang, S. S., 2006. Multivariate Exponential Tilting and Pricing Implications for Mortality Securitization. Journal of Risk and Insurance 73, 719-736.
Dawson, P., 2002. Mortality Swaps, Mimeo, Cass Business School.
Dawson, P., Blake, D., Cairns, A. J. G., Dowd, K., 2010. Survivor Derivatives: A Consistent Pricing Framework. Journal of Risk and Insurance 77, 579-596.
Demarta, S., McNeil, A. J., 2005. The t Copula and Related Copulas. International Statistical Review 73, 111-129.
Denuit, M., Devolder, P., Goderniaux, A. C., 2007. Securitization of Longevity Risk: Pricing Survivor Bonds With Wang Transform in The Lee-Carter Framework. Journal of Risk and Insurance 74, 87-113.
Dowd, K., Blake, D., Cairns, A. J. G., Dawson, P., 2006. Survivor Swaps. Journal of Risk and Insurance 73, 1-17.
Dowd, K., Cairns, A. J. G., Black, D., Coughlan, G. D., Epstein, D., Khalaf-Allah, M., 2010. Evaluating the Goodness of Fit of Stochastic Mortality Models. Insurance: Mathematics and Economics 47, 255-265.
Eberlein, E., Keller, U., 1995. Hyperbolic Distributions in Finance. Bernoulli 1, 281-299.
Eberlein, E., Madan, D. B., 2009. On Correlating Lévy Processes. Working paper.
Fajardo, J., Farias, A., 2009. Multivariate Affine Generalized Hyperbolic Distributions: An Empirical Investigation. International Review of Financial Analysis 18, 174-184.
Fajardo, J., Farias, A., 2010. Derivative Pricing Using Multivariate Affine Generalized Hyperbolic Distributions. Journal of Banking and Finance 34, 1607-1617.
Fajardo, J., Mordecki, E., 2006. Pricing Derivatives on Two Dimensional Lévy Processes. International Journal of Theoretical and Applied Finance 9, 185-197.
Fu, M. C., Laprise, S. B., Madan, D. B., Su, Y., Wu, R., 2001. Pricing American Options: A Comparison of Monte Carlo Simulation Approaches. Journal of Computational Finance 2, 62-73.
Gerber, H., Shiu, E., 1994. Option Pricing by Esscher Transforms. Transactions of the Society of Actuaries 46, 99-191.
Giacometti, R., Ortobelli, S., Bertocchi, M. I., 2009. Impact of Different Distributional Assumptions in Forecasting Italian Mortality Rates. Investment Management and Financial Innovations 6(3), 186-193.
Glasserman, P., 2003. Monte Carlo Methods in Financial Engineering. New York, Springer.
Goodman. L. A., 1979. Simple Models for the Analysis of Association in Cross-Classifications Having Ordered Categories. Journal of the American Statistical Association 74, 537-552.
Haberman, S., Renshaw, A. E., 2009. On Age-Period-Cohort parametric motality rate projections. Insurance: Mathematics and Economics 45, 255-270.
Hainaut, D., 2012. Multidimensional Lee-Carter Model with Switching Mortality Processes. Insurance: Mathematics and Economics 50, 236-246.
Hainaut, D., Devolder, P., 2008. Mortality Modelling with Lévy processes. Insurance: Mathematics and Economics 42, 409-418.
Harrison, J. M., Kreps, D. M., 1979. Martingales and Arbitrage in Multiperiod Securities Markets. Journal of Economic Theory 20, 381-408.
Harrison, J. M., Pliska, S. R., 1981. Martingales and Stochastic Integrals in the Theory of Continuous Trading. Stochastic Processes and Their Applications 11, 215-280.
Harrison, J.M., Pliska, S. R., 1983. A Stochastic Calculus Model of Continuous Trading: Complete Markets. Stochastic Processes and their Applications 15, 313-316.
Heath, D., Jarrow, R., Morton, R., 1992. Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claim Valuation. Econometrica 60, 77-105.
Hirsa, A., Madan, D., 2004. Pricing American Options under Variance-Gamma. Journal of Computational Finance 7, 63-80.
Jarque, C. M., Bera, A. K., 1980. Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals. Economic Letters 6, 255-259.
Jones, M. C., Faddy, M. J., 2003. A Skew Extension of the t Distribution, with Applications. Journal of the Royal Statistical Society B 65, 159-174.
Këllezi, E., Webber, N., 2004. Valuing Bermudan Options When Asset Returns Are Lévy processes. Quantitative Finance 4, 87-100.
Kolmogorov A. N., 1933. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin. English translation (1950): Foundations of the theory of probability. Chelsea, New York.
Lee, R., 2000. The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications. North American Actuarial Journal 4, 80-93.
Lee, R. D., Carter, L. R., 1992. Modeling and Forecasting U.S. Mortality. Journal of the American Statistical Association 87, 659-675.
Li. S. H., Chan, W. S., 2007. The Lee-Carter Model for Forecasting Mortality, Revisited. North American Actuarial Journal 11, 68-89.
Lillestøl, J., 2000. Risk Analysis and the NIG Distribution. Journal of Risk 2, 41-56.
Lin, Y., Cox, S. H., 2005. Securitization of Mortality Risks in Life Annuities. Journal of Risk and Insurance 72: 227-252.
Lin, Y., Cox, S. H., 2008. Securitization of Catastrophe Mortality Risks. Insurance Mathematics and Economics 42, 628-637.
Loeys, J., Panigirtzoglou, N., Ribeiro, R., 2007. Longevity: A Market in the Making, J. P. Morgan Research Publication.
Longstaff, F. A., Schwartz, E. S., 2001. Valuing American Options by Simulation: A Simple Least-Squares Approach. The Review of Financial Studies 14, 113-147.
Luciano, E., Schoutens, W., 2006. A Multivariate Jump-Driven Financial Asset Model. Quantitative Finance 385-402.
Luciano, E. Semeraro, P., 2007. Extending Time-Changed Lévy Asset Models through Multivariate Subordinators. Working paper.
Luciano, E., Semeraro, P., 2010. A Generalized Normal Mean Variance Mixture for Return Processes in Finance. International Journal of Theoretical and Applied Finance 13, 415-440.
Luciano, E., Vigna, E., 2005. Non Mean Reverting Affine Processes for Stochastic Mortality. ICER Applied Mathematics Working Paper No.4 Available at SSRN: http://ssrn.com/abstract=724706.
Madan D. B., Carr, P. P., Chang, E. C., 1998. The Variance Gamma Process and Option Pricing. European Finance Review 2, 79-105.
Madan, D. B., Seneta, E., 1987. Chebyshev Polynomial Approximations and Characteristic Function Estimation. Journal of the Royal Statistical Society Series B 49, 163-169.

Madan D. B., Seneta, E., 1990. The Variance Gamma (VG) Model for Share Market Returns. Journal of Business 63, 511-524.
Maller, R. A., Solomon, D. H., Szimayer, A., 2006. A Multinomial Approximation for American Option Prices in Lévy process Models. Mathematical Finance 16, 613-633.
Mandelbrot, B., Taylor, H., 1967. On the Distribution of Stock Prices Differences. Operations Research 15, 1057-1062.
Matache, A. M., Nitsche, P. A., Schwab, C., 2005. Wavelet Galerkin Pricing of American Options on Lévy Driven Assets. Quantitative Finance 5, 403-424.
Mencia, F. J., Sentana, E., 2004. Estimation and Testing of Dynamic Models with Generalised Hyperbolic Innovations. CMFI Working Paper 0411, Madrid, Spain.
Milidonis, A., Lin, Y., Cox, S. H., 2011. Mortality Regimes and Pricing. North American Actuarial Journal 15, 266-289.
Mulinacci, S., 1996. An Approximation of American Option Prices in a Jump-Diffusion Model. Stochastic Processes and their Applications 62, 1-17.
Pitacco, E., 2004. Survival Models in Dynamic Context: A Survey. Insurance: Mathematics and Economics 35, 279-298.
Prause, K., 1997. Modelling Financial Data Using Generalized Hyperbolic Distributions. FDM Preprint 48, University of Freiburg.
Prause, K., 1999. The Generalized Hyperbolic Models: Estimation, Financial Derivatives and Risk Measurement. PhD Thesis, Mathematics Faculty, University of Freiburg.
Renshaw, A. E., Haberman, S., 2003. Lee-Carter Mortality Forecasting with Age-Specific Enhancement. Insurance: Mathematics and Economics 33, 255-272.
Renshaw, A. E., Haberman, S., 2006. A Cohort-Based Extension to the Lee-Carter Model for Mortality Reduction Factors. Insurance: Mathematics and Economics 38, 556-570.
Rydberg, T. H., 1997. The Normal Inverse Gaussian Lévy process: Simulation and Approximation. Communications in Statistics: Stochastic models 13, 887-910.
Schwarz, G., 1978. Estimating the Dimension of a Model. Annals of Statistics 6, 461-464.
Schmidt, R., Hrycej, T., Stutzle, E., 2006. Multivariate Distribution Models with Generalized Hyperbolic Margins. Computational Statistics and Data Analysis 50, 2065-2096.
Semeraro, P., 2008. A Multivariate Variance Gamma Model for Financial Application. Journal of Theoretical and Applied Finance 11,1-18.
Stephens, M. A., 1974. EDF Statistics for Goodness of Fit and Some Comparisons. Journal of the American Statistical Association 69, 730-737.
Wang, C. W., Huang, H. C., Liu, I. C., 2011. A Quantitative Comparison of the Lee-Carter Model under Different Types of Non-Gaussian Innovations. Geneva Papers on Risk and Insurance―Issues and Practice 36, 675-696.
Wang, C. W., Yang, S. S., 2012. Pricing Survivor Derivatives with Cohort Mortality Dependence under the Lee-Carter Framework. Forthcoming in Journal of Risk and Insurance.
Wilmoth, J. R., 1993. Computational Methods for Fitting and Extrapolating the Lee-Carter Model of Mortality Change. Technical Report, Department of Demography, University of California, Berkeley.
描述 博士
國立政治大學
風險管理與保險研究所
97358505
101
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0097358505
資料類型 thesis
dc.contributor.advisor 黃泓智zh_TW
dc.contributor.advisor Huang, Hong Chihen_US
dc.contributor.author (Authors) 劉議謙zh_TW
dc.contributor.author (Authors) Liu, I Chienen_US
dc.creator (作者) 劉議謙zh_TW
dc.creator (作者) Liu, I Chienen_US
dc.date (日期) 2012en_US
dc.date.accessioned 1-Nov-2012 13:51:16 (UTC+8)-
dc.date.available 1-Nov-2012 13:51:16 (UTC+8)-
dc.date.issued (上傳時間) 1-Nov-2012 13:51:16 (UTC+8)-
dc.identifier (Other Identifiers) G0097358505en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/55113-
dc.description (描述) 博士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 風險管理與保險研究所zh_TW
dc.description (描述) 97358505zh_TW
dc.description (描述) 101zh_TW
dc.description.abstract (摘要) 本篇論文將厚尾分配(Heavy-Tailed Distribution)應用在財務及保險精算上。本研究主要有三個部分:第一部份是用厚尾分配來重新建構Lee-Carter模型(1992),發現改良後的Lee-Carter模型其配適與預測效果都較準確。第二部分是將厚尾分配建構於具有世代因子(Cohort Factor)的Renshaw and Haberman模型(2006)中,其配適及預測效果皆有顯著改善,此外,針對英格蘭及威爾斯(England and Wales)訂價長壽交換(Longevity Swaps),結果顯示此模型可以支付較少的長壽交換之保費以及避免低估損失準備金。第三部分是財務上的應用,利用Schmidt等人(2006)提出的多元仿射廣義雙曲線分配(Multivariate Affine Generalized Hyperbolic Distributions; MAGH)於Boyle等人(2003)提出的低偏差網狀法(Low Discrepancy Mesh; LDM)來定價多維度的百慕達選擇權。理論上,LDM法的數值會高於Longstaff and Schwartz(2001)提出的最小平方法(Least Square Method; LSM)的數值,而數值分析結果皆一致顯示此性質,藉由此特性,我們可知道多維度之百慕達選擇權的真值落於此範圍之間。zh_TW
dc.description.abstract (摘要) The thesis focus on the application of heavy-tailed distributions in finance and actuarial science. We provide three applications in this thesis. The first application is that we refine the Lee-Carter model (1992) with heavy-tailed distributions. The results show that the Lee-Carter model with heavy-tailed distributions provide better fitting and prediction. The second application is that we also model the error term of Renshaw and Haberman model (2006) using heavy-tailed distributions and provide an iterative fitting algorithm to generate maximum likelihood estimates under the Cox regression model. Using the RH model with non-Gaussian innovations can pay lower premiums of longevity swaps and avoid the underestimation of loss reserves for England and Wales. The third application is that we use multivariate affine generalized hyperbolic (MAGH) distributions introduced by Schmidt et al. (2006) and low discrepancy mesh (LDM) method introduced by Boyle et al. (2003), to show how to price multidimensional Bermudan derivatives. In addition, the LDM estimates are higher than the corresponding estimates from the Least Square Method (LSM) of Longstaff and Schwartz (2001). This is consistent with the property that the LDM estimate is high bias while the LSM estimate is low bias. This property also ensures that the true option value will lie between these two bounds.en_US
dc.description.tableofcontents Chapter 1. Introduction 1
Chapter 2. Heavy-Tailed Distributions 11
2.1. Introductions of Heavy-Tailed Distributions 11
2.2. The Standardization Approaches for Heavy-Tailed Distributions 17
2.3. Estimation Scheme with Standardization 20
Chapter 3. A Quantitative Comparison of the Lee-Carter Model under Different Types of Non-Gaussian Innovations 23
3.1. The Lee-Carter Model with Heavy-Tailed Innovations 23
3.2. Empirical Analysis 31
3.3. Conclusions 47
Chapter 4. Mortality Modeling with Non-Gaussian Innovations and Applications to the Valuation of Longevity Swaps 49
4.1. Stochastic Mortality Models with Cox Error Structures 49
4.2. Empirical Analysis 55
4.3. Application: The Valuation of Longevity Swaps 59
4.4. Conclusions and Suggestions 68
Chapter 5. Pricing High-Dimensional Bermudan Options with Lévy Processes Using Low Discrepancy Mesh Methods 71
5.1. Multivariate Affine Generalized Hyperbolic Distributions 71
5.2. Low Discrepancy Mesh (LDM) Method 75
5.3. Empirical and Numerical Analyses 79
5.4. Conclusions 91
Chapter 6. Conclusions 93
Appendix A 97
Appendix B 99
Appendix C 101
Appendix D 103
Appendix E 105
Appendix F 107
References 109
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0097358505en_US
dc.subject (關鍵詞) 隨機死亡率模型zh_TW
dc.subject (關鍵詞) 厚尾分配zh_TW
dc.subject (關鍵詞) 長壽交換zh_TW
dc.subject (關鍵詞) 百慕達選擇權zh_TW
dc.subject (關鍵詞) 多元Lévy分配zh_TW
dc.subject (關鍵詞) 低偏差網狀法zh_TW
dc.subject (關鍵詞) Stochastic Mortality Modelsen_US
dc.subject (關鍵詞) Heavy-Tailed Distributionsen_US
dc.subject (關鍵詞) Longevity Swapsen_US
dc.subject (關鍵詞) Bermudan Optionsen_US
dc.subject (關鍵詞) Multivariate Lévy Distributionsen_US
dc.subject (關鍵詞) Low Discrepancy Meshen_US
dc.title (題名) 厚尾分配在財務與精算領域之應用zh_TW
dc.title (題名) Applications of Heavy-Tailed distributions in finance and actuarial scienceen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Aas, K., Haff, I. H., 2006. The Generalized Hyperbolic Skew Student’s t-distribution. Journal of Financial Econometrics 4, 275-309.
Akaike, H, 1974. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control AC-19, 716-723.
Amin, K., 1993. Jump Diffusion Option Valuation in Discrete Time. Journal of Finance 48, 1833-1863.
Anderson, T. W., 1962. On the Distribution of the Two-Sample Cramér-Von Mises Criterion. The Annals of Mathematical Statistics 33, 1148-1159.
Barbarin J., 2008. Heath-Jarrow-Morton Modelling of Longevity Bonds and the Risk Minimization of Life Insurance Portfolios. Insurance Mathematics and Economics 43, 41-55.
Barndorff-Nielsen, O. E., 1977. Exponentially decreasing distributions for the logarithm of particle size. Proceedings of the Royal Society of London 353, 409-419.
Barndorff-Nielsen, O. E., 1978. Hyperbolic distributions and distributions on hyperbolae. Scandinavian Journal of Statistics 5, 151-157.
Barndorff-Nielsen, O. E., 1995. Normal Inverse Gaussian Processes and the Modeling of Stock Returns. Technical Report 300, Department of Theoretical Statistics, Institute of Mathematics.
Barndorff-Nielsen , O. E, Pedersen, J., Sato, K. I., 2001. Multivariate Subordination Self-Decomposability and Stability. Advance Application Probability 33, 160-187.


Barndorff-Nielsen, O. E., Shephard, N., 2001. Non-Gaussian Ornstein-Uhlenbeck-Based Models and Some of Their Uses in Financial Economics. Journal of the Royal Statistical Society B 63, 167-241
Bauer, D., 2006. An Arbitrage-Free Family of Longevity Bonds, Discussion Paper, Ulm University.
Biffis, E., 2005. Affine Processes for Dynamic Mortality and Actuarial Valuations. Insurance: Mathematics and economics 37, 443-468.
Biffis, E., Blake, D., Pitotti, L., Sun, A., 2011. The Cost of Counterparty Risk and Collateralization in Longevity Swaps, Pensions Institute Discussion Paper PI-1107, June.
Biffis, E., Denuit, M., Devolder, P., 2010. Stochastic Mortality under Measure Changes. Scandinavian Actuarial Journal 4, 284-311.
Bishop, C. M., 2006. Pattern Recognition and Machine Learning. Springer.
Blake, D., Burrows, W., 2001. Survivor Bonds: Helping to Hedge Mortality Risk. Journal of Risk and Insurance 68, 339-348.
Blake, D., Cairns, A. J. G., Coughlan, G., Dowd, K., MacMinn, R., 2012. The New Life Market, Discussion Paper.
Blasild, P., Jensen, J. L., 1981. Multivariate Distributions of Hyperbolic Type. In Statistical Distributions in Scientific Work-Proceedings of theNATO Advanced Study Institute held at the Università degli studi di Trieste 4, 45-66.
Bølviken, E., Benth, F. E., 2000. Quantification of Risk in Norwegian Stocks via the Normal Inverse Gaussian Distribution. Proceedings of the AFIA 2000 Colloquium, Tromsø, Norway, 87-98.
Boyle, P. P., Kolkiewicz, A. W., Tan, K. S., 2003. Pricing American Style Options Using Low Discrepancy Mesh Method. Submitted for Publication.
Broadie, M., Glasserman, P., 2004. A Stochastic Mesh Method for Pricing High-Dimensional American Options. Journal of Computational Finance 7, 35-72.
Brouhns, N., Denuit, M., Vermunt, J. K., 2002. A Poisson Log-Bilinear Regression Approach to the Construction of Projected Life Tables. Insurance: Mathematics and Economics 31, 373-393.
Cairns, A. J. G., Blake, D., Dowd, K., 2006. A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration. Journal of Risk and Insurance 73, 687-718.
Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Khalaf-Allah, M., 2010. A Framework for Forecasting Mortality Rates with an Application to Six Stochastic Mortality Models. Pensions Institute Discussion Paper PI-0801, March.
Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Ong, A., Balevich, I., 2009. A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States. North American Actuarial Journal 13, 1-35.
Carr, P., Geman, H., Madan, D. P., Yor, M., 2002. The Fine Structure of Asset Returns: An Empirical Investigation. Journal of Business 75, 305-332.
Carr, P., Madan, D. P., 1999. Option Valuation Using the Fast Fourier transform. Journal of Computational Finance 2, 61-73.
Chen, H., Cox, S. H., 2009. Modeling Mortality with Jumps: Applications to Mortality Securitization. Journal of Risk and Insurance 76, 727-751.
Chernobai, A. S., Rachev, S. T., Fabozzi, F. J., 2007. Operational Risk: A Guide to Basel II Capital Requirements, Models, and Analysis. John Wiley & Sons, Inc..
Clark, P. K., 1973. A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices. Journal of the Econometric Society 41, 135-156.
Cont, R., Tankov, P., 2004. Financial Modelling with Jump Processes. Chapman and Hall/CRC Financial Mathematics Series.
Cox, D. R., 1955. Some Statistical Methods Connected with Series of Events (with Discussion). Journal of the Royal Statistical Society, Series B 17, 129-164.
Cox, S. H., Lin, Y., Wang, S. S., 2006. Multivariate Exponential Tilting and Pricing Implications for Mortality Securitization. Journal of Risk and Insurance 73, 719-736.
Dawson, P., 2002. Mortality Swaps, Mimeo, Cass Business School.
Dawson, P., Blake, D., Cairns, A. J. G., Dowd, K., 2010. Survivor Derivatives: A Consistent Pricing Framework. Journal of Risk and Insurance 77, 579-596.
Demarta, S., McNeil, A. J., 2005. The t Copula and Related Copulas. International Statistical Review 73, 111-129.
Denuit, M., Devolder, P., Goderniaux, A. C., 2007. Securitization of Longevity Risk: Pricing Survivor Bonds With Wang Transform in The Lee-Carter Framework. Journal of Risk and Insurance 74, 87-113.
Dowd, K., Blake, D., Cairns, A. J. G., Dawson, P., 2006. Survivor Swaps. Journal of Risk and Insurance 73, 1-17.
Dowd, K., Cairns, A. J. G., Black, D., Coughlan, G. D., Epstein, D., Khalaf-Allah, M., 2010. Evaluating the Goodness of Fit of Stochastic Mortality Models. Insurance: Mathematics and Economics 47, 255-265.
Eberlein, E., Keller, U., 1995. Hyperbolic Distributions in Finance. Bernoulli 1, 281-299.
Eberlein, E., Madan, D. B., 2009. On Correlating Lévy Processes. Working paper.
Fajardo, J., Farias, A., 2009. Multivariate Affine Generalized Hyperbolic Distributions: An Empirical Investigation. International Review of Financial Analysis 18, 174-184.
Fajardo, J., Farias, A., 2010. Derivative Pricing Using Multivariate Affine Generalized Hyperbolic Distributions. Journal of Banking and Finance 34, 1607-1617.
Fajardo, J., Mordecki, E., 2006. Pricing Derivatives on Two Dimensional Lévy Processes. International Journal of Theoretical and Applied Finance 9, 185-197.
Fu, M. C., Laprise, S. B., Madan, D. B., Su, Y., Wu, R., 2001. Pricing American Options: A Comparison of Monte Carlo Simulation Approaches. Journal of Computational Finance 2, 62-73.
Gerber, H., Shiu, E., 1994. Option Pricing by Esscher Transforms. Transactions of the Society of Actuaries 46, 99-191.
Giacometti, R., Ortobelli, S., Bertocchi, M. I., 2009. Impact of Different Distributional Assumptions in Forecasting Italian Mortality Rates. Investment Management and Financial Innovations 6(3), 186-193.
Glasserman, P., 2003. Monte Carlo Methods in Financial Engineering. New York, Springer.
Goodman. L. A., 1979. Simple Models for the Analysis of Association in Cross-Classifications Having Ordered Categories. Journal of the American Statistical Association 74, 537-552.
Haberman, S., Renshaw, A. E., 2009. On Age-Period-Cohort parametric motality rate projections. Insurance: Mathematics and Economics 45, 255-270.
Hainaut, D., 2012. Multidimensional Lee-Carter Model with Switching Mortality Processes. Insurance: Mathematics and Economics 50, 236-246.
Hainaut, D., Devolder, P., 2008. Mortality Modelling with Lévy processes. Insurance: Mathematics and Economics 42, 409-418.
Harrison, J. M., Kreps, D. M., 1979. Martingales and Arbitrage in Multiperiod Securities Markets. Journal of Economic Theory 20, 381-408.
Harrison, J. M., Pliska, S. R., 1981. Martingales and Stochastic Integrals in the Theory of Continuous Trading. Stochastic Processes and Their Applications 11, 215-280.
Harrison, J.M., Pliska, S. R., 1983. A Stochastic Calculus Model of Continuous Trading: Complete Markets. Stochastic Processes and their Applications 15, 313-316.
Heath, D., Jarrow, R., Morton, R., 1992. Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claim Valuation. Econometrica 60, 77-105.
Hirsa, A., Madan, D., 2004. Pricing American Options under Variance-Gamma. Journal of Computational Finance 7, 63-80.
Jarque, C. M., Bera, A. K., 1980. Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals. Economic Letters 6, 255-259.
Jones, M. C., Faddy, M. J., 2003. A Skew Extension of the t Distribution, with Applications. Journal of the Royal Statistical Society B 65, 159-174.
Këllezi, E., Webber, N., 2004. Valuing Bermudan Options When Asset Returns Are Lévy processes. Quantitative Finance 4, 87-100.
Kolmogorov A. N., 1933. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin. English translation (1950): Foundations of the theory of probability. Chelsea, New York.
Lee, R., 2000. The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications. North American Actuarial Journal 4, 80-93.
Lee, R. D., Carter, L. R., 1992. Modeling and Forecasting U.S. Mortality. Journal of the American Statistical Association 87, 659-675.
Li. S. H., Chan, W. S., 2007. The Lee-Carter Model for Forecasting Mortality, Revisited. North American Actuarial Journal 11, 68-89.
Lillestøl, J., 2000. Risk Analysis and the NIG Distribution. Journal of Risk 2, 41-56.
Lin, Y., Cox, S. H., 2005. Securitization of Mortality Risks in Life Annuities. Journal of Risk and Insurance 72: 227-252.
Lin, Y., Cox, S. H., 2008. Securitization of Catastrophe Mortality Risks. Insurance Mathematics and Economics 42, 628-637.
Loeys, J., Panigirtzoglou, N., Ribeiro, R., 2007. Longevity: A Market in the Making, J. P. Morgan Research Publication.
Longstaff, F. A., Schwartz, E. S., 2001. Valuing American Options by Simulation: A Simple Least-Squares Approach. The Review of Financial Studies 14, 113-147.
Luciano, E., Schoutens, W., 2006. A Multivariate Jump-Driven Financial Asset Model. Quantitative Finance 385-402.
Luciano, E. Semeraro, P., 2007. Extending Time-Changed Lévy Asset Models through Multivariate Subordinators. Working paper.
Luciano, E., Semeraro, P., 2010. A Generalized Normal Mean Variance Mixture for Return Processes in Finance. International Journal of Theoretical and Applied Finance 13, 415-440.
Luciano, E., Vigna, E., 2005. Non Mean Reverting Affine Processes for Stochastic Mortality. ICER Applied Mathematics Working Paper No.4 Available at SSRN: http://ssrn.com/abstract=724706.
Madan D. B., Carr, P. P., Chang, E. C., 1998. The Variance Gamma Process and Option Pricing. European Finance Review 2, 79-105.
Madan, D. B., Seneta, E., 1987. Chebyshev Polynomial Approximations and Characteristic Function Estimation. Journal of the Royal Statistical Society Series B 49, 163-169.

Madan D. B., Seneta, E., 1990. The Variance Gamma (VG) Model for Share Market Returns. Journal of Business 63, 511-524.
Maller, R. A., Solomon, D. H., Szimayer, A., 2006. A Multinomial Approximation for American Option Prices in Lévy process Models. Mathematical Finance 16, 613-633.
Mandelbrot, B., Taylor, H., 1967. On the Distribution of Stock Prices Differences. Operations Research 15, 1057-1062.
Matache, A. M., Nitsche, P. A., Schwab, C., 2005. Wavelet Galerkin Pricing of American Options on Lévy Driven Assets. Quantitative Finance 5, 403-424.
Mencia, F. J., Sentana, E., 2004. Estimation and Testing of Dynamic Models with Generalised Hyperbolic Innovations. CMFI Working Paper 0411, Madrid, Spain.
Milidonis, A., Lin, Y., Cox, S. H., 2011. Mortality Regimes and Pricing. North American Actuarial Journal 15, 266-289.
Mulinacci, S., 1996. An Approximation of American Option Prices in a Jump-Diffusion Model. Stochastic Processes and their Applications 62, 1-17.
Pitacco, E., 2004. Survival Models in Dynamic Context: A Survey. Insurance: Mathematics and Economics 35, 279-298.
Prause, K., 1997. Modelling Financial Data Using Generalized Hyperbolic Distributions. FDM Preprint 48, University of Freiburg.
Prause, K., 1999. The Generalized Hyperbolic Models: Estimation, Financial Derivatives and Risk Measurement. PhD Thesis, Mathematics Faculty, University of Freiburg.
Renshaw, A. E., Haberman, S., 2003. Lee-Carter Mortality Forecasting with Age-Specific Enhancement. Insurance: Mathematics and Economics 33, 255-272.
Renshaw, A. E., Haberman, S., 2006. A Cohort-Based Extension to the Lee-Carter Model for Mortality Reduction Factors. Insurance: Mathematics and Economics 38, 556-570.
Rydberg, T. H., 1997. The Normal Inverse Gaussian Lévy process: Simulation and Approximation. Communications in Statistics: Stochastic models 13, 887-910.
Schwarz, G., 1978. Estimating the Dimension of a Model. Annals of Statistics 6, 461-464.
Schmidt, R., Hrycej, T., Stutzle, E., 2006. Multivariate Distribution Models with Generalized Hyperbolic Margins. Computational Statistics and Data Analysis 50, 2065-2096.
Semeraro, P., 2008. A Multivariate Variance Gamma Model for Financial Application. Journal of Theoretical and Applied Finance 11,1-18.
Stephens, M. A., 1974. EDF Statistics for Goodness of Fit and Some Comparisons. Journal of the American Statistical Association 69, 730-737.
Wang, C. W., Huang, H. C., Liu, I. C., 2011. A Quantitative Comparison of the Lee-Carter Model under Different Types of Non-Gaussian Innovations. Geneva Papers on Risk and Insurance―Issues and Practice 36, 675-696.
Wang, C. W., Yang, S. S., 2012. Pricing Survivor Derivatives with Cohort Mortality Dependence under the Lee-Carter Framework. Forthcoming in Journal of Risk and Insurance.
Wilmoth, J. R., 1993. Computational Methods for Fitting and Extrapolating the Lee-Carter Model of Mortality Change. Technical Report, Department of Demography, University of California, Berkeley.
zh_TW