Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 迪菲方塊
Diffy Pentagon作者 黃信弼 貢獻者 李陽明
黃信弼關鍵詞 迪菲五邊形
強勢數學歸納法
Diffy pentagon
Strong induction日期 2012 上傳時間 1-Nov-2012 13:58:08 (UTC+8) 摘要 在迪菲方塊中,我們將正方形的四個頂點皆填入數值,再利用相鄰兩頂點相減,再取絕對值的方式觀察其數列行為,發現四個頂點的數字最後皆會收斂至0。在本文中,我們將之推廣至五邊形,我們稱它為迪菲五邊形。我們套用同樣的運算模式後,發現亦有特殊的收斂行為。
In Diffy box, we write down numbers on the four vertices of square, and then on the midpoint of each side write the difference between the two numbers at its endpoints. It is known that the numbers on the four vertices of a square will converge to zero finally. In this article, we use the same operations as Diffy box to discuss pentagons which we call" Diffy pentagon ". We find it will converge, too.參考文獻 [1] A. Behn, C. Kribs-Zaleta, and V. Ponomarenko, The Convergence of Difference Boxes. American Math. Monthly, volume 112, 426-438, (1995)[2] F. Breuer, Ducci Sequences in Higher Dimensions. Electronic Journal of Combinatorial Number Theory 7, #A24, (2007)[3] R. Brown and J. Merzel, The Length of Ducci’s Four-Number Game. Rocky Mountain Journal of Mathematics, volume37, 45-65, (2007) [4] N. Calkin, J. Stevens, and D. Thomas, A Characterization for the Length of Cycles of the N-Number Ducci Game. Fibonacci Quarterly, volume 43, no1, 53-59, (2005). [5] J. Creely, The Length of a Three-Number Game. Fibonacci Quarterly, volume 26, no2, 141-143, (1988).[6] A. Ehrlich, Periods in Ducci’s n-Number Game of Differences. Fibonacci Quarterly, volume 28, no4, 302-305, (1990)[7] A. Ludington-Young, Ducci-Processes of 5-Tuples. Fibonacci Quarterly, volume 36, no5, 419-434, (May 1998)[8] A. Ludington-Young, Length of the 7-Number Game. Fibonacci Quarterly, volume 26, no3,195-204, (1998).[9] A. Ludington-Young, Length of the n-Number Game. Fibonacci Quarterly, volume 28, no3, 259-265, (1990).[10] W. Webb, The Length of the Four-Number Game. Fibonacci Quarterly, volume 20, no1, 33-35, (1982). [11] F.B. Wong, Ducci Processes. Fibonacci Quarterly, volume 20, no2, 97-105, (1982).[12] 蔡秀芬, Diffy Box (狄菲方塊). National Chengchi University, (2008) 描述 碩士
國立政治大學
應用數學系數學教學碩士在職專班
99972015
101資料來源 http://thesis.lib.nccu.edu.tw/record/#G0099972015 資料類型 thesis dc.contributor.advisor 李陽明 zh_TW dc.contributor.author (Authors) 黃信弼 zh_TW dc.creator (作者) 黃信弼 zh_TW dc.date (日期) 2012 en_US dc.date.accessioned 1-Nov-2012 13:58:08 (UTC+8) - dc.date.available 1-Nov-2012 13:58:08 (UTC+8) - dc.date.issued (上傳時間) 1-Nov-2012 13:58:08 (UTC+8) - dc.identifier (Other Identifiers) G0099972015 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/55132 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 應用數學系數學教學碩士在職專班 zh_TW dc.description (描述) 99972015 zh_TW dc.description (描述) 101 zh_TW dc.description.abstract (摘要) 在迪菲方塊中,我們將正方形的四個頂點皆填入數值,再利用相鄰兩頂點相減,再取絕對值的方式觀察其數列行為,發現四個頂點的數字最後皆會收斂至0。在本文中,我們將之推廣至五邊形,我們稱它為迪菲五邊形。我們套用同樣的運算模式後,發現亦有特殊的收斂行為。 zh_TW dc.description.abstract (摘要) In Diffy box, we write down numbers on the four vertices of square, and then on the midpoint of each side write the difference between the two numbers at its endpoints. It is known that the numbers on the four vertices of a square will converge to zero finally. In this article, we use the same operations as Diffy box to discuss pentagons which we call" Diffy pentagon ". We find it will converge, too. en_US dc.description.tableofcontents Abstract ----------------------------------------------------------------- i中文摘要 ----------------------------------------------------------------------- iiChapter 1 Introduction ---------------------------------------------- 1Chapter 2 The Description of the Convergence Properties -------- 22.1 Definitions and Theorems ----------------------------- 22.2 Description of Feature ----------------------------------- 8Chapter 3 Pentagon with Cycle Convergence ------------------------- 113.1 Introduction ----------------------------------------------- 113.2 The Proof with Strong Induction ------------------------ 11 Chapter 4 Conclusion and Promotion ---------------------------------- 23Appendix -------------------------------------------------------------------- 24References ------------------------------------------------------------------- 26 zh_TW dc.language.iso en_US - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0099972015 en_US dc.subject (關鍵詞) 迪菲五邊形 zh_TW dc.subject (關鍵詞) 強勢數學歸納法 zh_TW dc.subject (關鍵詞) Diffy pentagon en_US dc.subject (關鍵詞) Strong induction en_US dc.title (題名) 迪菲方塊 zh_TW dc.title (題名) Diffy Pentagon en_US dc.type (資料類型) thesis en dc.relation.reference (參考文獻) [1] A. Behn, C. Kribs-Zaleta, and V. Ponomarenko, The Convergence of Difference Boxes. American Math. Monthly, volume 112, 426-438, (1995)[2] F. Breuer, Ducci Sequences in Higher Dimensions. Electronic Journal of Combinatorial Number Theory 7, #A24, (2007)[3] R. Brown and J. Merzel, The Length of Ducci’s Four-Number Game. Rocky Mountain Journal of Mathematics, volume37, 45-65, (2007) [4] N. Calkin, J. Stevens, and D. Thomas, A Characterization for the Length of Cycles of the N-Number Ducci Game. Fibonacci Quarterly, volume 43, no1, 53-59, (2005). [5] J. Creely, The Length of a Three-Number Game. Fibonacci Quarterly, volume 26, no2, 141-143, (1988).[6] A. Ehrlich, Periods in Ducci’s n-Number Game of Differences. Fibonacci Quarterly, volume 28, no4, 302-305, (1990)[7] A. Ludington-Young, Ducci-Processes of 5-Tuples. Fibonacci Quarterly, volume 36, no5, 419-434, (May 1998)[8] A. Ludington-Young, Length of the 7-Number Game. Fibonacci Quarterly, volume 26, no3,195-204, (1998).[9] A. Ludington-Young, Length of the n-Number Game. Fibonacci Quarterly, volume 28, no3, 259-265, (1990).[10] W. Webb, The Length of the Four-Number Game. Fibonacci Quarterly, volume 20, no1, 33-35, (1982). [11] F.B. Wong, Ducci Processes. Fibonacci Quarterly, volume 20, no2, 97-105, (1982).[12] 蔡秀芬, Diffy Box (狄菲方塊). National Chengchi University, (2008) zh_TW