Publications-NSC Projects

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 決策學習模型的通用架構---尺度不變性與參數估計
其他題名 A General Framework for Decision-Learning Models---Dimensional Invariance and Parameter Estimation
作者 鄭中平
貢獻者 國立政治大學心理學系
行政院國家科學委員會
關鍵詞 決策學習模型
日期 2009
上傳時間 8-Nov-2012 14:05:26 (UTC+8)
摘要 愛荷華賭博作業廣泛用在顯示不同群體在決策歷程中的差異,透過以量化的認知模型分析愛荷華賭博作業,由於模型中的參數分別對應愛荷華賭博作業心理歷程的成分,可進一步瞭解不同群體在決策歷程上的可能差異。除了常用的期望價值學習模型外,尚有近十個量化認知模型,企圖模擬愛荷華賭博作業的認知歷程。本研究有三個目的,首先在建立一個通用的架構,儘可能納入這些決策學習模型。其次,透過通用架構進行這些模型的比對,瞭解模型的尺度不變性。最後,本研究擬針對此通用架構發展較具一般性的估計方式,以進行這些模型的參數估計。
Iowa gambling task is a cognitive task designed for exploring the possible decision making deficit. By modeling this task, parameters of the expectancy-valence model may be correspondent to the components of psychological processes underlying the Iowa gambling task. Besides the often-cited expectancy-valence model, there are up to 10 quantitative decision-learning models which also aim to simulate Iowa gambling task. The study consists of three objectives. First, the study will propose a general framework to incorporate most decision-learning models. Second, by comparing these models under the framework, we will explore the dimensional invariance issue. Finally, the study tries to develop a comprehensive statistical routine for most decision-learning models under the framework.
關聯 基礎研究
學術補助
研究期間:9808~ 9907
研究經費:443仟元
資料類型 report
dc.contributor 國立政治大學心理學系en_US
dc.contributor 行政院國家科學委員會en_US
dc.creator (作者) 鄭中平zh_TW
dc.date (日期) 2009en_US
dc.date.accessioned 8-Nov-2012 14:05:26 (UTC+8)-
dc.date.available 8-Nov-2012 14:05:26 (UTC+8)-
dc.date.issued (上傳時間) 8-Nov-2012 14:05:26 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/55309-
dc.description.abstract (摘要) 愛荷華賭博作業廣泛用在顯示不同群體在決策歷程中的差異,透過以量化的認知模型分析愛荷華賭博作業,由於模型中的參數分別對應愛荷華賭博作業心理歷程的成分,可進一步瞭解不同群體在決策歷程上的可能差異。除了常用的期望價值學習模型外,尚有近十個量化認知模型,企圖模擬愛荷華賭博作業的認知歷程。本研究有三個目的,首先在建立一個通用的架構,儘可能納入這些決策學習模型。其次,透過通用架構進行這些模型的比對,瞭解模型的尺度不變性。最後,本研究擬針對此通用架構發展較具一般性的估計方式,以進行這些模型的參數估計。en_US
dc.description.abstract (摘要) Iowa gambling task is a cognitive task designed for exploring the possible decision making deficit. By modeling this task, parameters of the expectancy-valence model may be correspondent to the components of psychological processes underlying the Iowa gambling task. Besides the often-cited expectancy-valence model, there are up to 10 quantitative decision-learning models which also aim to simulate Iowa gambling task. The study consists of three objectives. First, the study will propose a general framework to incorporate most decision-learning models. Second, by comparing these models under the framework, we will explore the dimensional invariance issue. Finally, the study tries to develop a comprehensive statistical routine for most decision-learning models under the framework.en_US
dc.language.iso en_US-
dc.relation (關聯) 基礎研究en_US
dc.relation (關聯) 學術補助en_US
dc.relation (關聯) 研究期間:9808~ 9907en_US
dc.relation (關聯) 研究經費:443仟元en_US
dc.subject (關鍵詞) 決策學習模型en_US
dc.title (題名) 決策學習模型的通用架構---尺度不變性與參數估計zh_TW
dc.title.alternative (其他題名) A General Framework for Decision-Learning Models---Dimensional Invariance and Parameter Estimationen_US
dc.type (資料類型) reporten