Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 蛋白激酶 CK2 與轉錄因子 SRF 訊息傳遞路徑參與神經滋養因子 BDNF 促進抗凋亡基因 Mcl-1 表現之細胞保護機制
BDNF-induced Anti-apoptotic Mcl-1 Gene Expression Through Protein Kinase CK2-mediated SRF Pathway
作者 羅之懿
Lo, Chih Yi
貢獻者 趙知章
Chao, Chih Chang
羅之懿
Lo, Chih Yi
關鍵詞 大腦神經滋養因子
蛋白激酶 CK2
血清反應因子
血清反應要素
轉錄作用
骨髓細胞白血病蛋白-1
細胞凋亡
腎上腺髓質嗜鉻細胞瘤細胞株
Brain-derived neurotrophic factor(BDNF)
Protein kinase CK2
Serum response factor(SRF)
Serum response element(SRE)
transcription
Myeloid cell leukemia sequence 1(Mcl-1)
apoptosis
Pheochromocytoma cell line 12(PC12)
日期 2012
上傳時間 1-May-2013 11:51:18 (UTC+8)
摘要 大腦神經滋養因子(BDNF)是神經生長因子家族成員之一的蛋白質,具有促進神經細胞存活和保護的作用,但其參與調節的細胞機制仍尚未被完全釐清,目前已知可被BDNF調控的蛋白激酶(CK2a)是一個普遍存在於細胞中並可針對其受質蛋白之絲胺酸或酪胺酸進行磷酸化的蛋白質,被發現高度表現於癌細胞中,對於細胞存活的角色十分重要,有研究指出 CK2a透過影響血清反應因子(SRF)接合至Serum response element(SRE)上並調控基因的轉錄作用達到保護細胞的作用。由於,抗細胞凋亡基因 Mcl-1 啟動子區域含有 SRE 序列且可調控細胞增生和存活。因此,本論文的主題是在 Rotenone 誘發細胞凋亡的實驗模式中,探討 BDNF / CK2a / SRF / Mcl-1 這條路徑是否有效抵抗細胞凋亡情形?實驗發現 BDNF 可增加 phospho-SRF 、 Mcl-1 蛋白質含量及 Mcl-1 mRNA 表現;利用小干擾 RNA抑制內生性 CK2a亦會降低 phospho-SRF 、Mcl-1 蛋白質含量及 Mcl-1 mRNA 表現。此外,共同轉染突變型 SRF99A 及野生型 CK2a-WT 質體 DNA會抑制 CK2a對促進 SRF 蛋白質磷酸化、 Mcl-1 蛋白質含量及 Mcl-1 mRNA 表現的作用。更進一步,抑制內生性 CK2a會降低 BDNF 對 Rotenone 氧化壓力的預防保護作用及細胞的存活率,同時抑制SRF轉錄作用、Mcl-1 蛋白質含量及mRNA 表現。在 Rotenone 氧化壓力下,轉染突變型 SRF99A 質體 DNA 同樣會降低 BDNF 對細胞的保護作用,並且抑制 Mcl-1 蛋白質含量及 mRNA 表現;此外,轉染突變型 SRF99A質體 DNA 也會抑制 CK2a-WT 對促進細胞存活率、 Mcl-1 蛋白質含量及 mRNA 表現的作用。綜合論文實驗結果可以得知,在氧化壓力下,BDNF 會透過 CK2a活化 SRF 進而調控下游 Mcl-1 基因表現的細胞訊息傳遞路徑,達到抵抗細胞凋亡的作用。
Brain-derived neurotrophic factor (BDNF), is a member of the nerve growth factors family. Many studies have indicated that BDNF can improve the neuronal survival. Protein kinase CK2 is an ubiquitous and highly conserved Ser/Thr protein kinase in evolution, and its enzyme activity was found to be elevated by BDNF. CK2 was also found to stimulate serum response element (SRE)-mediated gene expression for cellular protection via serum response factors (SRF). Furthermore, the anti-apoptotic Mcl-1 gene can promote cell proliferation and survival which promoter contains the SRE. Therefore, the thesis studies were aimed to investigate whether BDNF can up-regulate the expression of Mcl-1 through CK2a-mediated SRF phosphorylation and against the rotenone-induced apoptosis in PC12 cells. The results showed that BDNF could increase the phosphorylation status of SRF and the expressions of Mcl-1. However, CK2a siRNA treatment decreased the phosphorylation status of SRF and the expressions of Mcl-1 protein and mRNA. Further, co-transfection of mutant SRF99A antagonized CK2a-WT induced phosphorylation status of SRF and the protein and mRNA levels of Mcl-1. Moreover, CK2a siRNA treatments inhibited the protective effects of BDNF under rotenone-induced apoptosis parallel with the decrease in SRE-mediated transcription and Mcl-1 protein/mRNA expression. The mutant SRF99A plasmid transfection also diminished the BDNF-induced protection under rotenone-induced apoptosis parallel with the decrease in Mcl-1 protein and mRNA expression. The co-transfection of mutant SRF99A also blocked the CK2a-mediated effects on Mcl-1 protein and mRNA. Together with the above results suggest that CK2a-activated SRF pathway to enhance the anti-apoptotic Mcl-1 gene expression might be one of cellular mechanisms of BDNF which acts against rotenone-induced apoptosis.
參考文獻 Abiru Y, Katoh-Semba R, Nishio C, Hatanaka H. 1998. High potassium enhances secretion of neurotrophic factors from cultured astrocytes. Brain Research 809: 115-26
     Ahmad KA, Wang G, Unger G, Slaton J, Ahmed K. 2008. Protein kinase CK2 – A key suppressor of apoptosis. Advances in Enzyme Regulation 48: 179-87
     Akgul C. 2009. Mcl-1 is a potential therapeutic target in multiple types of cancer. Cellular and Molecular Life Sciences 66: 1326-36
     Al Quobaili F, Montenarh M. 2012. CK2 and the regulation of the carbohydrate metabolism. Metabolism 61: 1512-17
     Alberti S, Krause SM, Kretz O, Philippar U, Lemberger T, et al. 2005. Neuronal migration in the murine rostral migratory stream requires serum response factor. Proceedings of the National Academy of Sciences 102: 6148-53
     Ampofo E, Sokolowsky T, Götz C, Montenarh M. Functional interaction of protein kinase CK2 and activating transcription factor 4 (ATF4), a key player in the cellular stress response. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
     Barde YA, Edgar D, Thoenen H. 1982. Purification of a new neurotrophic factor from mammalian brain. EMBO J 1: 549-53
     Berkemeier LR, Winslow JW, Kaplan DR, Nikolics K, Goeddel DV, Rosenthal A. 1991. Neurotrophin-5: A novel neurotrophic factor that activates trk and trkB. Neuron 7: 857-66
     Blanquet PR. 1998. Neurotrophin-induced activation of casein kinase 2 in rat hippocampal slices. Neuroscience 86: 739-49
     Blanquet PR. 2000. Casein kinase 2 as a potentially important enzyme in the nervous system. Progress in Neurobiology 60: 211-46
     Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller F-J, et al. 2009. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proceedings of the National Academy of Sciences 106: 13594-99
     Bréchet A, Fache M-P, Brachet A, Ferracci G, Baude A, et al. 2008. Protein kinase CK2 contributes to the organization of sodium channels in axonal membranes by regulating their interactions with ankyrin G. The Journal of Cell Biology 183: 1101-14
     Caccamo A, Maldonado MA, Bokov AF, Majumder S, Oddo S. 2010. CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer`s disease. Proceedings of the National Academy of Sciences 107: 22687-92
     Cao X-l, Hu X-M, Hu J-Q, Zheng W-X. 2011. Myocardin-related transcription factor-A promoting neuronal survival against apoptosis induced by hypoxia/ischemia. Brain Research 1385: 263-74
     Cattaneo E, McKay R. 1990. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 347: 762-65
     Chakraborty A, Werner JK, Koldobskiy MA, Mustafa AK, Juluri KR, et al. 2011. Casein kinase-2 mediates cell survival through phosphorylation and degradation of inositol hexakisphosphate kinase-2. Proceedings of the National Academy of Sciences 108: 2205-09
     Chang SH, Poser S, Xia Z. 2004. A Novel Role For Serum Response Factor in Neuronal Survival. The Journal of Neuroscience 24: 2277-85
     Chao CC, Ma YL, Lee EHY. 2011. Brain-Derived Neurotrophic Factor Enhances Bcl-xL Expression Through Protein Kinase Casein Kinase 2-Activated and Nuclear Factor Kappa B-Mediated Pathway in Rat Hippocampus. Brain Pathology 21: 150-62
     Clohessy JG, Zhuang J, de Boer J, Gil-Gómez G, Brady HJM. 2006. Mcl-1 Interacts with Truncated Bid and Inhibits Its Induction of Cytochrome c Release and Its Role in Receptor-mediated Apoptosis. Journal of Biological Chemistry 281: 5750-59
     Demir O, Aysit N, Onder Z, Turkel N, Ozturk G, et al. 2011. ETS-domain transcription factor Elk-1 mediates neuronal survival: SMN as a potential target. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1812: 652-62
     DiCicco-Bloom E, Friedman WJ, Black IB. 1993. NT-3 stimulates sympathetic neuroblast proliferation by promoting precursor survival. Neuron 11: 1101-11
     Ernfors P, Wetmore C, Olson L, Persson H. 1990. Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron 5: 511-26
     Gärtner A, Staiger V. 2002. Neurotrophin secretion from hippocampal neurons evoked by long-term-potentiation-inducing electrical stimulation patterns. Proceedings of the National Academy of Sciences 99: 6386-91
     Giménez-Cassina A, Lim F, Díaz-Nido J. 2012. Chronic inhibition of glycogen synthase kinase-3 protects against rotenone-induced cell death in human neuron-like cells by increasing BDNF secretion. Neuroscience Letters 531: 182-87
     Gokce O, Runne H, Kuhn A, Luthi-Carter R. 2009. Short-Term Striatal Gene Expression Responses to Brain-Derived Neurotrophic Factor Are Dependent on MEK and ERK Activation. PLoS ONE 4: e5292
     Goncharenko-Khaider N, Matte I, Lane D, Rancourt C, Piche A. 2012. Ovarian cancer ascites increase Mcl-1 expression in tumor cells through ERK1/2-Elk-1 signaling to attenuate TRAIL-induced apoptosis. Molecular Cancer 11: 84
     Greene LA, Tischler AS. 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proceedings of the National Academy of Sciences 73: 2424-28
     Guo F, Wang H, Li L, Zhou H, Wei H, et al. 2013. A Novel Domain of Amino-Nogo-A Protects HT22 Cells Exposed to Oxygen Glucose Deprivation by Inhibiting NADPH Oxidase Activity. Cell Mol Neurobiol: 1-10
     Han J, Goldstein LA, Gastman BR, Rabinowich H. 2006. Interrelated Roles for Mcl-1 and BIM in Regulation of TRAIL-mediated Mitochondrial Apoptosis. Journal of Biological Chemistry 281: 10153-63
     Henderson CE, Camu W, Mettling C, Gouin A, Poulsen K, et al. 1993. Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature 363: 266-70
     Hohn A, Leibrock J, Bailey K, Barde Y-A. 1990. Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature 344: 339-41
     Hosoi T, Korematsu K, Horie N, Suezawa T, Okuma Y, et al. 2012. Inhibition of Casein Kinase 2 Modulates XBP1-GRP78 Arm of Unfolded Protein Responses in Cultured Glial Cells. PLoS ONE 7: e40144
     Huang Y-H, Chang AYW, Huang C-M, Huang S-W, Chan SHH. 2002. Proteomic analysis of lipopolysaccharide-induced apoptosis in PC12 cells. PROTEOMICS 2: 1220-28
     Hyman C, Hofer M, Barde Y-A, Juhasz M, Yancopoulos GD, et al. 1991. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350: 230-32
     Igney FH, Krammer PH. 2002. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2: 277-88
     Johnson-Farley NN, Patel K, Kim D, Cowen DS. 2007. Interaction of FGF-2 with IGF-1 and BDNF in stimulating Akt, ERK, and neuronal survival in hippocampal cultures. Brain Research 1154: 40-49
     Johnson-Farley NN, Travkina T, Cowen DS. 2006. Cumulative Activation of Akt and Consequent Inhibition of Glycogen Synthase Kinase-3 by Brain-Derived Neurotrophic Factor and Insulin-Like Growth Factor-1 in Cultured Hippocampal Neurons. Journal of Pharmacology and Experimental Therapeutics 316: 1062-69
     Jones KR, Reichardt LF. 1990. Molecular cloning of a human gene that is a member of the nerve growth factor family. Proceedings of the National Academy of Sciences 87: 8060-64
     Kalita K, Kharebava G, Zheng J-J, Hetman M. 2006. Role of Megakaryoblastic Acute Leukemia-1 in ERK1/2-Dependent Stimulation of Serum Response Factor-Driven Transcription by BDNF or Increased Synaptic Activity. The Journal of Neuroscience 26: 10020-32
     Kim GS, Jung JE, Niizuma K, Chan PH. 2009. CK2 Is a Novel Negative Regulator of NADPH Oxidase and a Neuroprotectant in Mice after Cerebral Ischemia. The Journal of Neuroscience 29: 14779-89
     Knöll B, Nordheim A. 2009. Functional versatility of transcription factors in the nervous system: the SRF paradigm. Trends in Neurosciences 32: 432-42
     Knoll B, Kretz O, Fiedler C, Alberti S, Schutz G, et al. 2006. Serum response factor controls neuronal circuit assembly in the hippocampus. Nat Neurosci 9: 195-204
     Lam BYH, Zhang W, Enticknap N, Haggis E, Cader MZ, Chawla S. 2009. Inverse Regulation of Plasticity-related Immediate Early Genes by Calcineurin in Hippocampal Neurons. Journal of Biological Chemistry 284: 12562-71
     Lee HR, Park SY, Kim HY, Shin HK, Lee WS, et al. 2012. Protection by cilostazol against amyloid-β1–40-induced suppression of viability and neurite elongation through activation of CK2α in HT22 mouse hippocampal cells. Journal of Neuroscience Research 90: 1566-76
     Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, et al. 1989. Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341: 149-52
     Levi-Montalcini R, Angeletti PU. 1968. Nerve growth factor. Physiological Reviews 48: 534-69
     Lindsay RM, Rohrer H. 1985. Placodal sensory neurons in culture: Nodose ganglion neurons are unresponsive to NGF, lack NGF receptors but are supported by a liver-derived neurotrophic factor. Developmental Biology 112: 30-48
     Litchfield DW. 2003. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J. 369: 1-15
     Maisonpierre PC, Belluscio L, Friedman B, Alderson RF, Wiegand SJ, et al. 1990. NT-3, BDNF, and NGF in the developing rat nervous system: Parallel as well as reciprocal patterns of expression. Neuron 5: 501-09
     Malone CD, Hasan SMM, Roome RB, Xiong J, Furlong M, et al. 2012. Mcl-1 regulates the survival of adult neural precursor cells. Molecular and Cellular Neuroscience 49: 439-47
     Manak JR, de Bisschop N, Kris RM, Prywes R. 1990. Casein kinase II enhances the DNA binding activity of serum response factor. Genes & Development 4: 955-67
     Masood A, Azmi AS, Mohammad RM. 2011. Small Molecule Inhibitors of Bcl-2 Family Proteins for Pancreatic Cancer Therapy. Cancers 3: 1527-49
     Meier C, Anastasiadou S, Knöll B. 2011. Ephrin-A5 Suppresses Neurotrophin Evoked Neuronal Motility, ERK Activation and Gene Expression. PLoS ONE 6: e26089
     Nestler E. 1998. Antidepressant treatments in the 21st century. Biological Psychiatry 44: 526-33
     Ngan B, Nourse J, Cleary M. 1989. Detection of chromosomal translocation t(14;18) within the minor cluster region of bcl-2 by polymerase chain reaction and direct genomic sequencing of the enzymatically amplified DNA in follicular lymphomas. Blood 73: 1759-62
     Numan S, Seroogy KB. 1999. Expression of trkB and trkC mRNAs by adult midbrain dopamine neurons: A double-label in situ hybridization study. The Journal of Comparative Neurology 403: 295-308
     Okazawa H, Murata M, Watanabe M, Kamei M, Kanazawa I. 1992. Dopaminergic stimulation up-regulates the in vivo expression of brain-derived neurotrophic factor (BDNF) in the striatum. FEBS Letters 313: 138-42
     Olsen BB, Svenstrup TH, Guerra B. 2012. Downregulation of protein kinase CK2 induces autophagic cell death through modulation of the mTOR and MAPK signaling pathways in human glioblastoma cells. International journal of oncology 41: 1967-76
     Peng S, Wuu J, Mufson EJ, Fahnestock M. 2005. Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer`s disease. Journal of Neurochemistry 93: 1412-21
     Perez DI, Gil C, Martinez A. 2011. Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases. Medicinal Research Reviews 31: 924-54
     Pintchovski SA, Peebles CL, Joo Kim H, Verdin E, Finkbeiner S. 2009. The Serum Response Factor and a Putative Novel Transcription Factor Regulate Expression of the Immediate-Early Gene Arc/Arg3.1 in Neurons. The Journal of Neuroscience 29: 1525-37
     Ponce DP, Maturana JL, Cabello P, Yefi R, Niechi I, et al. 2011. Phosphorylation of AKT/PKB by CK2 is necessary for the AKT-dependent up-regulation of β-catenin transcriptional activity. Journal of Cellular Physiology 226: 1953-59
     Ramanan N, Shen Y, Sarsfield S, Lemberger T, Schutz G, et al. 2005. SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability. Nat Neurosci 8: 759-67
     Rebholz H, Nishi A, Liebscher S, Nairn AC, Flajolet M, Greengard P. 2009. CK2 negatively regulates Gαs signaling. Proceedings of the National Academy of Sciences 106: 14096-101
     Rieker C, Schober A, Bilbao A, Schütz G, Parkitna JR. 2012. Ablation of serum response factor in dopaminergic neurons exacerbates susceptibility towards MPTP-induced oxidative stress. European Journal of Neuroscience 35: 735-41
     Rifkin IR, Channavajhala PL, Kiefer HLB, Carmack AJ, Landesman-Bollag E, et al. 1998. Acceleration of lpr Lymphoproliferative and Autoimmune Disease by Transgenic Protein Kinase CK2α. The Journal of Immunology 161: 5164-70
     Rosenthal A, Goeddel DV, Nguyen T, Lewis M, Shih A, et al. 1990. Primary structure and biological activity of a novel human neurotrophic factor. Neuron 4: 767-73
     Sai Y, Wu Q, Le W, Ye F, Li Y, Dong Z. 2008. Rotenone-induced PC12 cell toxicity is caused by oxidative stress resulting from altered dopamine metabolism. Toxicology in Vitro 22: 1461-68
     Sanchez-Ponce D, Muñoz A, Garrido JJ. 2011. Casein kinase 2 and microtubules control axon initial segment formation. Molecular and Cellular Neuroscience 46: 222-34
     Schneider CC, Ampofo E, Montenarh M. 2012. CK2 regulates ATF4 and CHOP transcription within the cellular stress response signalling pathway. Cellular Signalling 24: 1797-802
     Schratt G, Philippar U, Hockemeyer D, Schwarz H, Alberti S, Nordheim A. 2004. SRF regulates Bcl-2 expression and promotes cell survival during murine embryonic development. EMBO J 23: 1834-44
     Stahl K, Mylonakou MN, Skare Ø, Amiry-Moghaddam M, Torp R. 2011. Cytoprotective effects of growth factors: BDNF more potent than GDNF in an organotypic culture model of Parkinson`s disease. Brain Research 1378: 105-18
     Sun M, Kong L, Wang X, Lu X-g, Gao Q, Geller AI. 2005. Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson`s disease. Brain Research 1052: 119-29
     Tagscherer K, Fassl A, Sinkovic T, Combs S, Roth W. 2012. p53-dependent regulation of Mcl-1 contributes to synergistic cell death by ionizing radiation and the Bcl-2/Bcl-XL inhibitor ABT-737. Apoptosis 17: 187-99
     Takahashi M, Ko L-w, Kulathingal J, Jiang P, Sevlever D, Yen S-HC. 2007. Oxidative stress-induced phosphorylation, degradation and aggregation of α-synuclein are linked to upregulated CK2 and cathepsin D. European Journal of Neuroscience 26: 863-74
     Tyan S-W, Tsai M-C, Lin C-L, Ma Y-L, Lee EHY. 2008. Serum- and glucocorticoid-inducible kinase 1 enhances zif268 expression through the mediation of SRF and CREB1 associated with spatial memory formation. Journal of Neurochemistry 105: 820-32
     Ulery PG, Rudenko G, Nestler EJ. 2006. Regulation of ΔFosB Stability by Phosphorylation. The Journal of Neuroscience 26: 5131-42
     van Tiel CM, Kurakula K, Koenis DS, van der Wal E, de Vries CJM. 2012. Dual function of Pin1 in NR4A nuclear receptor activation: Enhanced activity of NR4As and increased Nur77 protein stability. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1823: 1894-904
     Venero JL, Vizuete ML, Revuelta M, Vargas C, Cano J, Machado A. 2000. Upregulation of BDNF mRNA and trkB mRNA in the Nigrostriatal System and in the Lesion Site Following Unilateral Transection of the Medial Forebrain Bundle. Experimental Neurology 161: 38-48
     Wickramasinghe SR, Alvania RS, Ramanan N, Wood JN, Mandai K, Ginty DD. 2008. Serum Response Factor Mediates NGF-Dependent Target Innervation by Embryonic DRG Sensory Neurons. Neuron 58: 532-45
     Xie H, Yung W-h. 2012. Chronic intermittent hypoxia-induced deficits in synaptic plasticity and neurocognitive functions: a role for brain-derived neurotrophic factor. Acta Pharmacol Sin 33: 5-10
     Zheng Y, Qin H, Frank SJ, Deng L, Litchfield DW, et al. 2011. A CK2-dependent mechanism for activation of the JAK-STAT signaling pathway. Blood 118: 156-66
描述 碩士
國立政治大學
神經科學研究所
99754007
101
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0099754007
資料類型 thesis
dc.contributor.advisor 趙知章zh_TW
dc.contributor.advisor Chao, Chih Changen_US
dc.contributor.author (Authors) 羅之懿zh_TW
dc.contributor.author (Authors) Lo, Chih Yien_US
dc.creator (作者) 羅之懿zh_TW
dc.creator (作者) Lo, Chih Yien_US
dc.date (日期) 2012en_US
dc.date.accessioned 1-May-2013 11:51:18 (UTC+8)-
dc.date.available 1-May-2013 11:51:18 (UTC+8)-
dc.date.issued (上傳時間) 1-May-2013 11:51:18 (UTC+8)-
dc.identifier (Other Identifiers) G0099754007en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/57970-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 神經科學研究所zh_TW
dc.description (描述) 99754007zh_TW
dc.description (描述) 101zh_TW
dc.description.abstract (摘要) 大腦神經滋養因子(BDNF)是神經生長因子家族成員之一的蛋白質,具有促進神經細胞存活和保護的作用,但其參與調節的細胞機制仍尚未被完全釐清,目前已知可被BDNF調控的蛋白激酶(CK2a)是一個普遍存在於細胞中並可針對其受質蛋白之絲胺酸或酪胺酸進行磷酸化的蛋白質,被發現高度表現於癌細胞中,對於細胞存活的角色十分重要,有研究指出 CK2a透過影響血清反應因子(SRF)接合至Serum response element(SRE)上並調控基因的轉錄作用達到保護細胞的作用。由於,抗細胞凋亡基因 Mcl-1 啟動子區域含有 SRE 序列且可調控細胞增生和存活。因此,本論文的主題是在 Rotenone 誘發細胞凋亡的實驗模式中,探討 BDNF / CK2a / SRF / Mcl-1 這條路徑是否有效抵抗細胞凋亡情形?實驗發現 BDNF 可增加 phospho-SRF 、 Mcl-1 蛋白質含量及 Mcl-1 mRNA 表現;利用小干擾 RNA抑制內生性 CK2a亦會降低 phospho-SRF 、Mcl-1 蛋白質含量及 Mcl-1 mRNA 表現。此外,共同轉染突變型 SRF99A 及野生型 CK2a-WT 質體 DNA會抑制 CK2a對促進 SRF 蛋白質磷酸化、 Mcl-1 蛋白質含量及 Mcl-1 mRNA 表現的作用。更進一步,抑制內生性 CK2a會降低 BDNF 對 Rotenone 氧化壓力的預防保護作用及細胞的存活率,同時抑制SRF轉錄作用、Mcl-1 蛋白質含量及mRNA 表現。在 Rotenone 氧化壓力下,轉染突變型 SRF99A 質體 DNA 同樣會降低 BDNF 對細胞的保護作用,並且抑制 Mcl-1 蛋白質含量及 mRNA 表現;此外,轉染突變型 SRF99A質體 DNA 也會抑制 CK2a-WT 對促進細胞存活率、 Mcl-1 蛋白質含量及 mRNA 表現的作用。綜合論文實驗結果可以得知,在氧化壓力下,BDNF 會透過 CK2a活化 SRF 進而調控下游 Mcl-1 基因表現的細胞訊息傳遞路徑,達到抵抗細胞凋亡的作用。zh_TW
dc.description.abstract (摘要) Brain-derived neurotrophic factor (BDNF), is a member of the nerve growth factors family. Many studies have indicated that BDNF can improve the neuronal survival. Protein kinase CK2 is an ubiquitous and highly conserved Ser/Thr protein kinase in evolution, and its enzyme activity was found to be elevated by BDNF. CK2 was also found to stimulate serum response element (SRE)-mediated gene expression for cellular protection via serum response factors (SRF). Furthermore, the anti-apoptotic Mcl-1 gene can promote cell proliferation and survival which promoter contains the SRE. Therefore, the thesis studies were aimed to investigate whether BDNF can up-regulate the expression of Mcl-1 through CK2a-mediated SRF phosphorylation and against the rotenone-induced apoptosis in PC12 cells. The results showed that BDNF could increase the phosphorylation status of SRF and the expressions of Mcl-1. However, CK2a siRNA treatment decreased the phosphorylation status of SRF and the expressions of Mcl-1 protein and mRNA. Further, co-transfection of mutant SRF99A antagonized CK2a-WT induced phosphorylation status of SRF and the protein and mRNA levels of Mcl-1. Moreover, CK2a siRNA treatments inhibited the protective effects of BDNF under rotenone-induced apoptosis parallel with the decrease in SRE-mediated transcription and Mcl-1 protein/mRNA expression. The mutant SRF99A plasmid transfection also diminished the BDNF-induced protection under rotenone-induced apoptosis parallel with the decrease in Mcl-1 protein and mRNA expression. The co-transfection of mutant SRF99A also blocked the CK2a-mediated effects on Mcl-1 protein and mRNA. Together with the above results suggest that CK2a-activated SRF pathway to enhance the anti-apoptotic Mcl-1 gene expression might be one of cellular mechanisms of BDNF which acts against rotenone-induced apoptosis.en_US
dc.description.tableofcontents 謝 誌………………………………………………………………………………………….I
     中文摘要…………………………………………………………………………..…………..………...II
     英文摘要……………………………………………………………………………..……………....III
     目 錄..........................................................................................................................V
     圖 次......................................................................................................................VIII
     縮寫表......................................................................................................................IX
     第一章 緒論................................................................................................................01
      第一節、大腦神經滋養因子 BDNF ..........................................................................02
     一、 BDNF 的生理功能......................................................................................02
     二、 BDNF 的訊號傳遞機制…………………….………………….……..…………03
      第二節、蛋白激酶Protein Kinase CK2(Casein Kinase 2)........................................05
     一、 CK2 的生理功能.........................................................................................05
     二、 CK2 的訊號傳遞機制………………………………...…………………………06
      第三節、血清反應因子 Serum Response Factor(SRF)..........................................08
     一、 SRF 的生理功能..........................................................................................08
     二、 SRF 的訊號傳遞機制...................................................................................09
      第四節、計畫性細胞凋亡(Apoptosis).......................................................................10
      第五節、抗細胞凋亡蛋白B-cell Lymphoma-2 (Bcl-2) 家族....................................12
      第六節、抗細胞凋亡蛋白Myeloid Cell Leukemia Sequence 1 (Mcl-1)...................13
     一、 Mcl-1 的結構與生理功能..............................................................................13
     二、 Mcl-1 的訊號傳遞機制.................................................................................14
      第七節、本論文之研究目的.......................................................................................15
     第二章、實驗材料與研究方法.......................................................................................16
      第一節、細胞培養.....................................................................................................17
     一、 培養皿覆蓋 poly-L-lysine.............................................................................17
     二、 細胞種類.......................................................................................................17
     三、 細胞繼代培養與計數.....................................................................................18
      第二節、質體 DNA 製備..........................................................................................18
     一、 細菌培養液與固體培養基製備......................................................................18
     二、 小量質體 DNA 之製備.................................................................................19
     三、 瓊脂膠體電泳分析........................................................................................20
      第三節、藥物處理與轉染..........................................................................................20
     一、 藥物處理(Drug treatment)...........................................................................20
     二、 細胞之 Plasmid DNA 與 siDNA 製備.........................................................20
     三、 細胞之 Plasmid DNA 與 siDNA 轉染.........................................................21
      第四節、啟動子-冷光酶試劑(Promoter-Luciferase Assay).......................................21
      第五節、西方點墨法(Western Boltting)...................................................................22
     一、 蛋白質萃取...................................................................................................22
     二、 蛋白質濃度測定............................................................................................23
     三、 蛋白質樣品配製............................................................................................23
     四、 鑄膠和聚丙烯硫胺膠體電泳(SDS-PAGE)....................................................24
     五、 轉漬(Transfer)............................................................................................24
     六、 免疫轉印(Immunoblotting)...........................................................................25
      第六節、及時定量聚合酶連鎖反應(q-PCR)........................................................26
     一、 RNA萃取......................................................................................................26
     二、 反轉錄互補 DNA(cDNA) .........................................................................27
     三、 即時定量聚合酶連鎖反應..............................................................................28
      第七節、細胞存活率分析- MTT 試驗法(MTT assay)............................................28
      第八節、統計分析....................................................................................................29
     第三章、實驗結果.........................................................................................................30
      第一節、 BDNF 會增加 SRF 磷酸化及 Mcl-1 蛋白質的含量...............................31
      第二節、 轉染突變型 SRF99A DNA 會降低 BDNF 促進轉錄作用的效果............33
      第三節、 抑制 CK2會降低 SRF蛋白質磷酸化含量及 Mcl-1基因表現………..35
     第四節、突變 SRF Ser99 胺基酸會降低 CK2 促進 Mcl-1 蛋白質含量及 mRNA
          表現的效果................................................................................................38
      第五節、氧化壓力狀態之下抑制 CK2 會降低BDNF 對細胞的保護作用.............41
      
     
     第六節、氧化壓力狀態之下抑制 CK2 會降低 BDNF 促進細胞 Mcl-1 基因
      表現..................................................................................44
      第七節、氧化壓力狀態之下抑制 CK2會降低 BDNF 對細胞的轉錄作用效果......46
      第八節、氧化壓力狀態之下 SRF Ser99 點突變會降低 BDNF 對細胞的 Mcl-1 的
          蛋白質含量及 mRNA 的表現量................................................................48
      第九節、氧化壓力狀態之下 SRF Ser99 點突變會降低 CK2對增加細胞的存活
          能力..........................................................................................................50
      第十節、氧化壓力狀態之下 SRF Ser99 點突變會降低 CK2促進細胞 Mcl-1 蛋白
          質含量及 mRNA 的表現量.......................................................................52
     第四章 討論..............................................................................................................54
     第五章 結論..............................................................................................................61
     參考文獻
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0099754007en_US
dc.subject (關鍵詞) 大腦神經滋養因子zh_TW
dc.subject (關鍵詞) 蛋白激酶 CK2zh_TW
dc.subject (關鍵詞) 血清反應因子zh_TW
dc.subject (關鍵詞) 血清反應要素zh_TW
dc.subject (關鍵詞) 轉錄作用zh_TW
dc.subject (關鍵詞) 骨髓細胞白血病蛋白-1zh_TW
dc.subject (關鍵詞) 細胞凋亡zh_TW
dc.subject (關鍵詞) 腎上腺髓質嗜鉻細胞瘤細胞株zh_TW
dc.subject (關鍵詞) Brain-derived neurotrophic factor(BDNF)en_US
dc.subject (關鍵詞) Protein kinase CK2en_US
dc.subject (關鍵詞) Serum response factor(SRF)en_US
dc.subject (關鍵詞) Serum response element(SRE)en_US
dc.subject (關鍵詞) transcriptionen_US
dc.subject (關鍵詞) Myeloid cell leukemia sequence 1(Mcl-1)en_US
dc.subject (關鍵詞) apoptosisen_US
dc.subject (關鍵詞) Pheochromocytoma cell line 12(PC12)en_US
dc.title (題名) 蛋白激酶 CK2 與轉錄因子 SRF 訊息傳遞路徑參與神經滋養因子 BDNF 促進抗凋亡基因 Mcl-1 表現之細胞保護機制zh_TW
dc.title (題名) BDNF-induced Anti-apoptotic Mcl-1 Gene Expression Through Protein Kinase CK2-mediated SRF Pathwayen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Abiru Y, Katoh-Semba R, Nishio C, Hatanaka H. 1998. High potassium enhances secretion of neurotrophic factors from cultured astrocytes. Brain Research 809: 115-26
     Ahmad KA, Wang G, Unger G, Slaton J, Ahmed K. 2008. Protein kinase CK2 – A key suppressor of apoptosis. Advances in Enzyme Regulation 48: 179-87
     Akgul C. 2009. Mcl-1 is a potential therapeutic target in multiple types of cancer. Cellular and Molecular Life Sciences 66: 1326-36
     Al Quobaili F, Montenarh M. 2012. CK2 and the regulation of the carbohydrate metabolism. Metabolism 61: 1512-17
     Alberti S, Krause SM, Kretz O, Philippar U, Lemberger T, et al. 2005. Neuronal migration in the murine rostral migratory stream requires serum response factor. Proceedings of the National Academy of Sciences 102: 6148-53
     Ampofo E, Sokolowsky T, Götz C, Montenarh M. Functional interaction of protein kinase CK2 and activating transcription factor 4 (ATF4), a key player in the cellular stress response. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
     Barde YA, Edgar D, Thoenen H. 1982. Purification of a new neurotrophic factor from mammalian brain. EMBO J 1: 549-53
     Berkemeier LR, Winslow JW, Kaplan DR, Nikolics K, Goeddel DV, Rosenthal A. 1991. Neurotrophin-5: A novel neurotrophic factor that activates trk and trkB. Neuron 7: 857-66
     Blanquet PR. 1998. Neurotrophin-induced activation of casein kinase 2 in rat hippocampal slices. Neuroscience 86: 739-49
     Blanquet PR. 2000. Casein kinase 2 as a potentially important enzyme in the nervous system. Progress in Neurobiology 60: 211-46
     Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller F-J, et al. 2009. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proceedings of the National Academy of Sciences 106: 13594-99
     Bréchet A, Fache M-P, Brachet A, Ferracci G, Baude A, et al. 2008. Protein kinase CK2 contributes to the organization of sodium channels in axonal membranes by regulating their interactions with ankyrin G. The Journal of Cell Biology 183: 1101-14
     Caccamo A, Maldonado MA, Bokov AF, Majumder S, Oddo S. 2010. CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer`s disease. Proceedings of the National Academy of Sciences 107: 22687-92
     Cao X-l, Hu X-M, Hu J-Q, Zheng W-X. 2011. Myocardin-related transcription factor-A promoting neuronal survival against apoptosis induced by hypoxia/ischemia. Brain Research 1385: 263-74
     Cattaneo E, McKay R. 1990. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 347: 762-65
     Chakraborty A, Werner JK, Koldobskiy MA, Mustafa AK, Juluri KR, et al. 2011. Casein kinase-2 mediates cell survival through phosphorylation and degradation of inositol hexakisphosphate kinase-2. Proceedings of the National Academy of Sciences 108: 2205-09
     Chang SH, Poser S, Xia Z. 2004. A Novel Role For Serum Response Factor in Neuronal Survival. The Journal of Neuroscience 24: 2277-85
     Chao CC, Ma YL, Lee EHY. 2011. Brain-Derived Neurotrophic Factor Enhances Bcl-xL Expression Through Protein Kinase Casein Kinase 2-Activated and Nuclear Factor Kappa B-Mediated Pathway in Rat Hippocampus. Brain Pathology 21: 150-62
     Clohessy JG, Zhuang J, de Boer J, Gil-Gómez G, Brady HJM. 2006. Mcl-1 Interacts with Truncated Bid and Inhibits Its Induction of Cytochrome c Release and Its Role in Receptor-mediated Apoptosis. Journal of Biological Chemistry 281: 5750-59
     Demir O, Aysit N, Onder Z, Turkel N, Ozturk G, et al. 2011. ETS-domain transcription factor Elk-1 mediates neuronal survival: SMN as a potential target. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1812: 652-62
     DiCicco-Bloom E, Friedman WJ, Black IB. 1993. NT-3 stimulates sympathetic neuroblast proliferation by promoting precursor survival. Neuron 11: 1101-11
     Ernfors P, Wetmore C, Olson L, Persson H. 1990. Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron 5: 511-26
     Gärtner A, Staiger V. 2002. Neurotrophin secretion from hippocampal neurons evoked by long-term-potentiation-inducing electrical stimulation patterns. Proceedings of the National Academy of Sciences 99: 6386-91
     Giménez-Cassina A, Lim F, Díaz-Nido J. 2012. Chronic inhibition of glycogen synthase kinase-3 protects against rotenone-induced cell death in human neuron-like cells by increasing BDNF secretion. Neuroscience Letters 531: 182-87
     Gokce O, Runne H, Kuhn A, Luthi-Carter R. 2009. Short-Term Striatal Gene Expression Responses to Brain-Derived Neurotrophic Factor Are Dependent on MEK and ERK Activation. PLoS ONE 4: e5292
     Goncharenko-Khaider N, Matte I, Lane D, Rancourt C, Piche A. 2012. Ovarian cancer ascites increase Mcl-1 expression in tumor cells through ERK1/2-Elk-1 signaling to attenuate TRAIL-induced apoptosis. Molecular Cancer 11: 84
     Greene LA, Tischler AS. 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proceedings of the National Academy of Sciences 73: 2424-28
     Guo F, Wang H, Li L, Zhou H, Wei H, et al. 2013. A Novel Domain of Amino-Nogo-A Protects HT22 Cells Exposed to Oxygen Glucose Deprivation by Inhibiting NADPH Oxidase Activity. Cell Mol Neurobiol: 1-10
     Han J, Goldstein LA, Gastman BR, Rabinowich H. 2006. Interrelated Roles for Mcl-1 and BIM in Regulation of TRAIL-mediated Mitochondrial Apoptosis. Journal of Biological Chemistry 281: 10153-63
     Henderson CE, Camu W, Mettling C, Gouin A, Poulsen K, et al. 1993. Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature 363: 266-70
     Hohn A, Leibrock J, Bailey K, Barde Y-A. 1990. Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature 344: 339-41
     Hosoi T, Korematsu K, Horie N, Suezawa T, Okuma Y, et al. 2012. Inhibition of Casein Kinase 2 Modulates XBP1-GRP78 Arm of Unfolded Protein Responses in Cultured Glial Cells. PLoS ONE 7: e40144
     Huang Y-H, Chang AYW, Huang C-M, Huang S-W, Chan SHH. 2002. Proteomic analysis of lipopolysaccharide-induced apoptosis in PC12 cells. PROTEOMICS 2: 1220-28
     Hyman C, Hofer M, Barde Y-A, Juhasz M, Yancopoulos GD, et al. 1991. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350: 230-32
     Igney FH, Krammer PH. 2002. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2: 277-88
     Johnson-Farley NN, Patel K, Kim D, Cowen DS. 2007. Interaction of FGF-2 with IGF-1 and BDNF in stimulating Akt, ERK, and neuronal survival in hippocampal cultures. Brain Research 1154: 40-49
     Johnson-Farley NN, Travkina T, Cowen DS. 2006. Cumulative Activation of Akt and Consequent Inhibition of Glycogen Synthase Kinase-3 by Brain-Derived Neurotrophic Factor and Insulin-Like Growth Factor-1 in Cultured Hippocampal Neurons. Journal of Pharmacology and Experimental Therapeutics 316: 1062-69
     Jones KR, Reichardt LF. 1990. Molecular cloning of a human gene that is a member of the nerve growth factor family. Proceedings of the National Academy of Sciences 87: 8060-64
     Kalita K, Kharebava G, Zheng J-J, Hetman M. 2006. Role of Megakaryoblastic Acute Leukemia-1 in ERK1/2-Dependent Stimulation of Serum Response Factor-Driven Transcription by BDNF or Increased Synaptic Activity. The Journal of Neuroscience 26: 10020-32
     Kim GS, Jung JE, Niizuma K, Chan PH. 2009. CK2 Is a Novel Negative Regulator of NADPH Oxidase and a Neuroprotectant in Mice after Cerebral Ischemia. The Journal of Neuroscience 29: 14779-89
     Knöll B, Nordheim A. 2009. Functional versatility of transcription factors in the nervous system: the SRF paradigm. Trends in Neurosciences 32: 432-42
     Knoll B, Kretz O, Fiedler C, Alberti S, Schutz G, et al. 2006. Serum response factor controls neuronal circuit assembly in the hippocampus. Nat Neurosci 9: 195-204
     Lam BYH, Zhang W, Enticknap N, Haggis E, Cader MZ, Chawla S. 2009. Inverse Regulation of Plasticity-related Immediate Early Genes by Calcineurin in Hippocampal Neurons. Journal of Biological Chemistry 284: 12562-71
     Lee HR, Park SY, Kim HY, Shin HK, Lee WS, et al. 2012. Protection by cilostazol against amyloid-β1–40-induced suppression of viability and neurite elongation through activation of CK2α in HT22 mouse hippocampal cells. Journal of Neuroscience Research 90: 1566-76
     Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, et al. 1989. Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341: 149-52
     Levi-Montalcini R, Angeletti PU. 1968. Nerve growth factor. Physiological Reviews 48: 534-69
     Lindsay RM, Rohrer H. 1985. Placodal sensory neurons in culture: Nodose ganglion neurons are unresponsive to NGF, lack NGF receptors but are supported by a liver-derived neurotrophic factor. Developmental Biology 112: 30-48
     Litchfield DW. 2003. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J. 369: 1-15
     Maisonpierre PC, Belluscio L, Friedman B, Alderson RF, Wiegand SJ, et al. 1990. NT-3, BDNF, and NGF in the developing rat nervous system: Parallel as well as reciprocal patterns of expression. Neuron 5: 501-09
     Malone CD, Hasan SMM, Roome RB, Xiong J, Furlong M, et al. 2012. Mcl-1 regulates the survival of adult neural precursor cells. Molecular and Cellular Neuroscience 49: 439-47
     Manak JR, de Bisschop N, Kris RM, Prywes R. 1990. Casein kinase II enhances the DNA binding activity of serum response factor. Genes & Development 4: 955-67
     Masood A, Azmi AS, Mohammad RM. 2011. Small Molecule Inhibitors of Bcl-2 Family Proteins for Pancreatic Cancer Therapy. Cancers 3: 1527-49
     Meier C, Anastasiadou S, Knöll B. 2011. Ephrin-A5 Suppresses Neurotrophin Evoked Neuronal Motility, ERK Activation and Gene Expression. PLoS ONE 6: e26089
     Nestler E. 1998. Antidepressant treatments in the 21st century. Biological Psychiatry 44: 526-33
     Ngan B, Nourse J, Cleary M. 1989. Detection of chromosomal translocation t(14;18) within the minor cluster region of bcl-2 by polymerase chain reaction and direct genomic sequencing of the enzymatically amplified DNA in follicular lymphomas. Blood 73: 1759-62
     Numan S, Seroogy KB. 1999. Expression of trkB and trkC mRNAs by adult midbrain dopamine neurons: A double-label in situ hybridization study. The Journal of Comparative Neurology 403: 295-308
     Okazawa H, Murata M, Watanabe M, Kamei M, Kanazawa I. 1992. Dopaminergic stimulation up-regulates the in vivo expression of brain-derived neurotrophic factor (BDNF) in the striatum. FEBS Letters 313: 138-42
     Olsen BB, Svenstrup TH, Guerra B. 2012. Downregulation of protein kinase CK2 induces autophagic cell death through modulation of the mTOR and MAPK signaling pathways in human glioblastoma cells. International journal of oncology 41: 1967-76
     Peng S, Wuu J, Mufson EJ, Fahnestock M. 2005. Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer`s disease. Journal of Neurochemistry 93: 1412-21
     Perez DI, Gil C, Martinez A. 2011. Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases. Medicinal Research Reviews 31: 924-54
     Pintchovski SA, Peebles CL, Joo Kim H, Verdin E, Finkbeiner S. 2009. The Serum Response Factor and a Putative Novel Transcription Factor Regulate Expression of the Immediate-Early Gene Arc/Arg3.1 in Neurons. The Journal of Neuroscience 29: 1525-37
     Ponce DP, Maturana JL, Cabello P, Yefi R, Niechi I, et al. 2011. Phosphorylation of AKT/PKB by CK2 is necessary for the AKT-dependent up-regulation of β-catenin transcriptional activity. Journal of Cellular Physiology 226: 1953-59
     Ramanan N, Shen Y, Sarsfield S, Lemberger T, Schutz G, et al. 2005. SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability. Nat Neurosci 8: 759-67
     Rebholz H, Nishi A, Liebscher S, Nairn AC, Flajolet M, Greengard P. 2009. CK2 negatively regulates Gαs signaling. Proceedings of the National Academy of Sciences 106: 14096-101
     Rieker C, Schober A, Bilbao A, Schütz G, Parkitna JR. 2012. Ablation of serum response factor in dopaminergic neurons exacerbates susceptibility towards MPTP-induced oxidative stress. European Journal of Neuroscience 35: 735-41
     Rifkin IR, Channavajhala PL, Kiefer HLB, Carmack AJ, Landesman-Bollag E, et al. 1998. Acceleration of lpr Lymphoproliferative and Autoimmune Disease by Transgenic Protein Kinase CK2α. The Journal of Immunology 161: 5164-70
     Rosenthal A, Goeddel DV, Nguyen T, Lewis M, Shih A, et al. 1990. Primary structure and biological activity of a novel human neurotrophic factor. Neuron 4: 767-73
     Sai Y, Wu Q, Le W, Ye F, Li Y, Dong Z. 2008. Rotenone-induced PC12 cell toxicity is caused by oxidative stress resulting from altered dopamine metabolism. Toxicology in Vitro 22: 1461-68
     Sanchez-Ponce D, Muñoz A, Garrido JJ. 2011. Casein kinase 2 and microtubules control axon initial segment formation. Molecular and Cellular Neuroscience 46: 222-34
     Schneider CC, Ampofo E, Montenarh M. 2012. CK2 regulates ATF4 and CHOP transcription within the cellular stress response signalling pathway. Cellular Signalling 24: 1797-802
     Schratt G, Philippar U, Hockemeyer D, Schwarz H, Alberti S, Nordheim A. 2004. SRF regulates Bcl-2 expression and promotes cell survival during murine embryonic development. EMBO J 23: 1834-44
     Stahl K, Mylonakou MN, Skare Ø, Amiry-Moghaddam M, Torp R. 2011. Cytoprotective effects of growth factors: BDNF more potent than GDNF in an organotypic culture model of Parkinson`s disease. Brain Research 1378: 105-18
     Sun M, Kong L, Wang X, Lu X-g, Gao Q, Geller AI. 2005. Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson`s disease. Brain Research 1052: 119-29
     Tagscherer K, Fassl A, Sinkovic T, Combs S, Roth W. 2012. p53-dependent regulation of Mcl-1 contributes to synergistic cell death by ionizing radiation and the Bcl-2/Bcl-XL inhibitor ABT-737. Apoptosis 17: 187-99
     Takahashi M, Ko L-w, Kulathingal J, Jiang P, Sevlever D, Yen S-HC. 2007. Oxidative stress-induced phosphorylation, degradation and aggregation of α-synuclein are linked to upregulated CK2 and cathepsin D. European Journal of Neuroscience 26: 863-74
     Tyan S-W, Tsai M-C, Lin C-L, Ma Y-L, Lee EHY. 2008. Serum- and glucocorticoid-inducible kinase 1 enhances zif268 expression through the mediation of SRF and CREB1 associated with spatial memory formation. Journal of Neurochemistry 105: 820-32
     Ulery PG, Rudenko G, Nestler EJ. 2006. Regulation of ΔFosB Stability by Phosphorylation. The Journal of Neuroscience 26: 5131-42
     van Tiel CM, Kurakula K, Koenis DS, van der Wal E, de Vries CJM. 2012. Dual function of Pin1 in NR4A nuclear receptor activation: Enhanced activity of NR4As and increased Nur77 protein stability. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1823: 1894-904
     Venero JL, Vizuete ML, Revuelta M, Vargas C, Cano J, Machado A. 2000. Upregulation of BDNF mRNA and trkB mRNA in the Nigrostriatal System and in the Lesion Site Following Unilateral Transection of the Medial Forebrain Bundle. Experimental Neurology 161: 38-48
     Wickramasinghe SR, Alvania RS, Ramanan N, Wood JN, Mandai K, Ginty DD. 2008. Serum Response Factor Mediates NGF-Dependent Target Innervation by Embryonic DRG Sensory Neurons. Neuron 58: 532-45
     Xie H, Yung W-h. 2012. Chronic intermittent hypoxia-induced deficits in synaptic plasticity and neurocognitive functions: a role for brain-derived neurotrophic factor. Acta Pharmacol Sin 33: 5-10
     Zheng Y, Qin H, Frank SJ, Deng L, Litchfield DW, et al. 2011. A CK2-dependent mechanism for activation of the JAK-STAT signaling pathway. Blood 118: 156-66
zh_TW