Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 優化LTE-A中繼網路中使用頻率重用的資源分配
Optimal Resource Allocation for Frequency Reuse in LTE-A Relay Networks
作者 王鐘毅
Wang, Chung Yi
貢獻者 張宏慶
Jang, Hung Chin
王鐘毅
Wang, Chung Yi
關鍵詞 中繼站
頻率重用
長程演進
動態資源分配
干擾協調
relay network
frequency reuse
LTE-A
dynamic resource allocation
inter cell interference coordination
日期 2012
上傳時間 1-Jul-2013 17:33:56 (UTC+8)
摘要 LTE-A系統考慮了中繼站(Relay Station,RS)的配置,當RS的引入在改變網路架構的同時,也使得系統的無線電資源需要重新分配,以提高資源的利用率。然而,在加入RS後的系統,細胞間干擾(inter-cell interference)的問題仍是影響傳輸品質與系統容量的因素,尤其是在細胞邊緣(cell edge)的用戶更是明顯。雖然使用頻率重用可以增加整個系統頻譜利用率,但過多的頻率重用會增加系統結構的複雜度及增加干擾,反而影響訊號傳輸品質。
本論文針對在不同基站(Base Station,BS)所屬的系統下使用RS,探討對其所服務的cell邊緣與鄰近cell邊緣之間容易發生共用子通道(co-channel)的問題。本論文提出IFR (Improved Soft Frequency Reuse)方法,對cell內所有的RS在資源配置的順序排程上做調整,分別為cell中心區與cell邊緣區設計不同的演算法。並將cell規劃成三個sector分別配置所屬的RS,採用動態干擾協調以達到最有效率的資源配置,將干擾值降低以提高訊號雜訊比(Signal to Interference plus Noise Ratio,SINR),來達到提升cell邊緣及整體系統吞吐量(Throughput)的目的。
Considering the relay station (Relay Station, RS) configuration, LTE-A system is presented to the public. The introduction of the RS changes the network architecture. At the same time, it makes the system re-allocating radio resources in order to improve resource utilization. However, after adding RS, problems of interference between cells still affect the transmission quality and system capacity, especially for those users of cell edge. Although the frequency reuse can increase spectral efficiency of the system, too much of this will increase the system complexity of the structure and increase interference. That will affect the signal transmission quality.
This thesis proposes the IFR (Improved Soft Frequency Reuse) method. It improves co-channel Interference problem of using RS systems between the cell edge and adjacent cell edge. IFR adjusts allocations of all RS resources and designs different algorithms for cell edge and cell central region. We divide the cell into three sectors and arrange two RSs into one sector. We use dynamic interference coordination to achieve the most efficient allocation of resources.
And then it reduces the interference to improve the SINR (Signal to Interference plus Noise Ratio) and system throughput.
參考文獻 [1] 3GPP TS 36.211 v.8.4.0 Physical Channels and Modulation(Release 8)。
[2] 3GPP TS 36.212;Multiplexing and Channel Coding(Release 8)。
[3] 3GPP TS 36.213;Physical Layer Procedures(Release 8)。
[4] 3GPP TR 25.892;Feasibility Study for Orthogonal Frequency。
[5] Siemens, “Interference mitigation by partial frequency reuse”, 3GPP TSG-RAN WG1 Meeting #44, R1-060670,February 2006.
[6] X. Mao, A. Maaref, and K. H. Teo, “Adaptive soft frequency reuse for inter-cell interference coordination in SC-FDMA based 3GPP LTE uplinks,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM ’08), pp. 4782–4787, December 2008.
[7] Xunyong Zhang, Chen He, Lingge Jiang, Jing Xu, “Inter-cell interference coordination based on softer frequency reuse in OFDMA cellular systems”, IEEE Int. Conference Neural Networks & Signal Processing, pp.270-275, 8~10 June, 2008.
[8] W. H. Park and S.Bahk,“Resource management policies for fixed relays in cellular networks”,in Proc. IEEE GLOBECOM 2006, December 2006, San Francisco, California.
[9] P. Li, “Spectrum partitioning and relay positioning for cellular system enhanced with two-hop fixed relay nodes,” IEICE Trans. Comm., E90-B (Nov. 2007)
[10] J. Lee, S. Park, H. Wang et al.“QoS-guaranteed transmission scheme selection for OFDMA multi-hop cellular networks,” in Proc. IEEE ICC 2007, June 2007, Glasgow, Scotland, pp. 4587-4591。
[11] L.Wang, Y. Ji, F.Liu,and J.Li, ”Performance improvement through relay-channel partitioning and reuse in OFDMA multihop cellular networks,” in IEEE Wireless Communications and Mobile Computing Conference, 2008, pp. 177–182.
[12] W. Ajib, D. Haccoun,“An overview of scheduling algorithms in MIMO-based fourth-generation wireless systems, “ IEEE Transactions on Networking, Volume 19, Issue 5, Sept-Oct. 2005 Page(s); 43-48.
[13] J. M. Holtzman, “Asymptotic analysis of proportional fair algorithm, “IEEE personal, indoor and mobile radio communications, Vol. 2,pp: F-33-F-37,30 Sept,-3 Oct.,2001.
[14] Khedr M,. El-Rube I, Hanafy Y, Abou-zeid H, ”Subcarrier opportunistic proportional fair scheduling for OFDMA systems”, Internet, 2008. ICI 2008. 4th IEEE/IFIP, 23-25 Sept. 2008
[15] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe and T. Thomas, MOTOROLA INC., “LTE-advanced:next-generation wireless broadband technology,” IEEE Wireless Communication, vol.17, no. 3, June 2010.
描述 碩士
國立政治大學
資訊科學學系
98753020
101
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0098753020
資料類型 thesis
dc.contributor.advisor 張宏慶zh_TW
dc.contributor.advisor Jang, Hung Chinen_US
dc.contributor.author (Authors) 王鐘毅zh_TW
dc.contributor.author (Authors) Wang, Chung Yien_US
dc.creator (作者) 王鐘毅zh_TW
dc.creator (作者) Wang, Chung Yien_US
dc.date (日期) 2012en_US
dc.date.accessioned 1-Jul-2013 17:33:56 (UTC+8)-
dc.date.available 1-Jul-2013 17:33:56 (UTC+8)-
dc.date.issued (上傳時間) 1-Jul-2013 17:33:56 (UTC+8)-
dc.identifier (Other Identifiers) G0098753020en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/58698-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 98753020zh_TW
dc.description (描述) 101zh_TW
dc.description.abstract (摘要) LTE-A系統考慮了中繼站(Relay Station,RS)的配置,當RS的引入在改變網路架構的同時,也使得系統的無線電資源需要重新分配,以提高資源的利用率。然而,在加入RS後的系統,細胞間干擾(inter-cell interference)的問題仍是影響傳輸品質與系統容量的因素,尤其是在細胞邊緣(cell edge)的用戶更是明顯。雖然使用頻率重用可以增加整個系統頻譜利用率,但過多的頻率重用會增加系統結構的複雜度及增加干擾,反而影響訊號傳輸品質。
本論文針對在不同基站(Base Station,BS)所屬的系統下使用RS,探討對其所服務的cell邊緣與鄰近cell邊緣之間容易發生共用子通道(co-channel)的問題。本論文提出IFR (Improved Soft Frequency Reuse)方法,對cell內所有的RS在資源配置的順序排程上做調整,分別為cell中心區與cell邊緣區設計不同的演算法。並將cell規劃成三個sector分別配置所屬的RS,採用動態干擾協調以達到最有效率的資源配置,將干擾值降低以提高訊號雜訊比(Signal to Interference plus Noise Ratio,SINR),來達到提升cell邊緣及整體系統吞吐量(Throughput)的目的。
zh_TW
dc.description.abstract (摘要) Considering the relay station (Relay Station, RS) configuration, LTE-A system is presented to the public. The introduction of the RS changes the network architecture. At the same time, it makes the system re-allocating radio resources in order to improve resource utilization. However, after adding RS, problems of interference between cells still affect the transmission quality and system capacity, especially for those users of cell edge. Although the frequency reuse can increase spectral efficiency of the system, too much of this will increase the system complexity of the structure and increase interference. That will affect the signal transmission quality.
This thesis proposes the IFR (Improved Soft Frequency Reuse) method. It improves co-channel Interference problem of using RS systems between the cell edge and adjacent cell edge. IFR adjusts allocations of all RS resources and designs different algorithms for cell edge and cell central region. We divide the cell into three sectors and arrange two RSs into one sector. We use dynamic interference coordination to achieve the most efficient allocation of resources.
And then it reduces the interference to improve the SINR (Signal to Interference plus Noise Ratio) and system throughput.
en_US
dc.description.tableofcontents 第一章 緒論 1
1.1 LTE-A介紹 1
1.2 中繼技術與中繼站分類 3
1.2.1 中繼站主要功能 4
1.2.2 RS功能層級分類與拓樸架構 4
1.2.3 RS與BS的資源管理模式 6
1.3多點協作CoMP 7
1.4問題描述與動機 10
1.5論文架構 11
第二章 相關研究 13
2.1 LTE-A系統概述 13
2.1.1 LTE-A下行鏈路傳輸技術 13
2.1.2 LTE-A下行鏈路數據傳輸 16
2.1.3 MIMO概念 17
2.2 LTE-A的干擾協調技術 19
2.2.1 部分頻率重用(FFR) 20
2.2.2 軟式頻率重用(SFR) 21
2.2.3不同干擾協調/避免技術的比較 24
2.3 LTE-A加入Relay的頻率劃分與重用方法 24
2.3.1 Part-Frequency-7 (PF7) 25
2.3.2 Part-Frequency-4 (PF4) 26
2.3.3 Partial Reuse Scheme (PR) 26
2.3.4 Full Reuse Scheme (FR) 27
2.4共用子通道干擾(co-channel interference)分析 28
2.4.1 頻譜使用效率與干擾 32
2.5資源分配演算法 34
2.5.1 Round Robin排程演算法 34
2.5.2 Maximum C/I排程演算法 35
2.5.3 Proportional Fair排程演算法 35
第三章 研究方法 37
3.1問題分析 37
3.2 改良部分頻率重用方法(IFR) 38
3.2.1 Cell架構 40
3.2.2 中心分配演算法 41
3.2.3邊緣分配演算法 42
3.3 干擾分析 46
3.3.1 中心用戶的干擾分析 46
3.3.2 邊緣用戶的干擾分析 48
3.3.3 Cell容量及性能計算 50
第四章 模擬實驗與結果分析 52
4.1 模擬流程 52
4.2 模擬實驗 55
4.3 實驗結果 61
第五章 結論與未來研究 63
5.1 結論 63
5.2 未來研究 64
參考文獻 67
zh_TW
dc.format.extent 2048691 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0098753020en_US
dc.subject (關鍵詞) 中繼站zh_TW
dc.subject (關鍵詞) 頻率重用zh_TW
dc.subject (關鍵詞) 長程演進zh_TW
dc.subject (關鍵詞) 動態資源分配zh_TW
dc.subject (關鍵詞) 干擾協調zh_TW
dc.subject (關鍵詞) relay networken_US
dc.subject (關鍵詞) frequency reuseen_US
dc.subject (關鍵詞) LTE-Aen_US
dc.subject (關鍵詞) dynamic resource allocationen_US
dc.subject (關鍵詞) inter cell interference coordinationen_US
dc.title (題名) 優化LTE-A中繼網路中使用頻率重用的資源分配zh_TW
dc.title (題名) Optimal Resource Allocation for Frequency Reuse in LTE-A Relay Networksen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] 3GPP TS 36.211 v.8.4.0 Physical Channels and Modulation(Release 8)。
[2] 3GPP TS 36.212;Multiplexing and Channel Coding(Release 8)。
[3] 3GPP TS 36.213;Physical Layer Procedures(Release 8)。
[4] 3GPP TR 25.892;Feasibility Study for Orthogonal Frequency。
[5] Siemens, “Interference mitigation by partial frequency reuse”, 3GPP TSG-RAN WG1 Meeting #44, R1-060670,February 2006.
[6] X. Mao, A. Maaref, and K. H. Teo, “Adaptive soft frequency reuse for inter-cell interference coordination in SC-FDMA based 3GPP LTE uplinks,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM ’08), pp. 4782–4787, December 2008.
[7] Xunyong Zhang, Chen He, Lingge Jiang, Jing Xu, “Inter-cell interference coordination based on softer frequency reuse in OFDMA cellular systems”, IEEE Int. Conference Neural Networks & Signal Processing, pp.270-275, 8~10 June, 2008.
[8] W. H. Park and S.Bahk,“Resource management policies for fixed relays in cellular networks”,in Proc. IEEE GLOBECOM 2006, December 2006, San Francisco, California.
[9] P. Li, “Spectrum partitioning and relay positioning for cellular system enhanced with two-hop fixed relay nodes,” IEICE Trans. Comm., E90-B (Nov. 2007)
[10] J. Lee, S. Park, H. Wang et al.“QoS-guaranteed transmission scheme selection for OFDMA multi-hop cellular networks,” in Proc. IEEE ICC 2007, June 2007, Glasgow, Scotland, pp. 4587-4591。
[11] L.Wang, Y. Ji, F.Liu,and J.Li, ”Performance improvement through relay-channel partitioning and reuse in OFDMA multihop cellular networks,” in IEEE Wireless Communications and Mobile Computing Conference, 2008, pp. 177–182.
[12] W. Ajib, D. Haccoun,“An overview of scheduling algorithms in MIMO-based fourth-generation wireless systems, “ IEEE Transactions on Networking, Volume 19, Issue 5, Sept-Oct. 2005 Page(s); 43-48.
[13] J. M. Holtzman, “Asymptotic analysis of proportional fair algorithm, “IEEE personal, indoor and mobile radio communications, Vol. 2,pp: F-33-F-37,30 Sept,-3 Oct.,2001.
[14] Khedr M,. El-Rube I, Hanafy Y, Abou-zeid H, ”Subcarrier opportunistic proportional fair scheduling for OFDMA systems”, Internet, 2008. ICI 2008. 4th IEEE/IFIP, 23-25 Sept. 2008
[15] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe and T. Thomas, MOTOROLA INC., “LTE-advanced:next-generation wireless broadband technology,” IEEE Wireless Communication, vol.17, no. 3, June 2010.
zh_TW