Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 改良式協同過濾推薦系統之架構與評估
A framework and evaluation of recommendation system using modified collaborative filtering method作者 張玉佩 貢獻者 李有仁
張玉佩關鍵詞 推薦系統
協同過濾
資料稀疏性
冷開始日期 2012 上傳時間 2-Sep-2013 16:02:19 (UTC+8) 摘要 協同過濾是電子商務中最常被使用也是最成功的推薦技術,但隨著電子商務的發展,網站使用者與商品數也迅速成長,使得使用者相關資料稀疏(Data sparsity)而嚴重影響推薦品質。對於新使用者與新商品,協同過濾也無法提供準確的推薦。為改善以上問題,本研究使用Lemire與Maclachlan (2005)所提出的Slope One演算架構及資料探勘方法中的單純貝式分類器(Naïve bayes classifier)來解決資料稀疏性和冷開始(Cold-start)問題。同時,考量到運算成本,將推薦系統架構分為離線預處理階段和線上預測階段,以避免當使用者數目和商品越來越大時運算成本超過實際可接受程度。 本研究採用MovieLens資料庫的資料集,包含943位使用者與1,682部電影,共10萬筆評比資料,評比分數範圍從1到5分,其中每位使用者至少評比20部以上電影。實驗評估方法則採用平均絕對誤差(MAE)來計算本研究的推薦系統對消費者喜好預測的準確度。 本研究希望所提出的個人化推薦系統能改善傳統協同過濾推薦系統的推薦品質,減少資料稀疏所造成的推薦誤差,更準確的推薦使用者感興趣的物品,以幫助使用者更有效率的進行線上消費,提高顧客滿意度與忠誠度,也提升電子商務網站營業效益。 參考文獻 任晓丽、刘鲁(民96)。推荐系统研究进展及展望。取自:中国科技论文在线,http://www.paper.edu.cn/index.php/default/releasepaper/content/200712-478 張哲銘 (民92)。以使用者偏好分類為基礎之網際資源推薦系統(未出版之碩士論文)。國立台灣大學,台北市。 黃君德 (民91)。電子商業網站產品推薦系統的研究與實作(未出版之碩士論文)。國立台灣大學,台北市。 楊亨利、黃仁智(民97)。具整體觀點考量之推薦系統:以家庭親子為例,中華管理評論國際學報,11(3),1-26。 Ahn, H. J. (2008). A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem. Information Sciences, 178(1), 37-51. doi:10.1016/j.ins.2007.07.024 Alton-Scheidl, R., Ekhall, J., van Geloven, O., Kovács, L., Micsik, A., Lueg, C.,…Wheeler, R. (1999). SELECT: social and collaborative filtering of web documents and news. Proceedings of the 5th ERCIM Workshop on User Interfaces for All, pp. 23-27. Armstrong, R., Freitag. D., Joachims, T. & Mitchell, T. (1995). WebWatcher: a learning apprentice for the world wide web. Proceedings of the AAAI Spring Symposium on Information Gathering from Heterogeneous, Distributed Environments, pp. 6-12. Balabanović, M., & Shoham, Y. (1997). Fab: content-based, collaborative recommendation. Communications of the ACM, 40(3), 66-72. doi:10.1145/245108.245124 Bobadilla, J., Ortega, F., & Hernando, A. (2012). A collaborative filtering similarity measure based on singularities. Information Processing & Management, 48(2), 204-217. doi:10.1016/j.ipm.2011.03.007 Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative filtering. In Gregory F. Cooper & Serafín Moral (Eds.), Proceedings of the 4th Conference on Uncertainty in Artificial Intelligence (pp. 43-52). San Francisco, CA: Morgan Kaufmann. Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combining content-based and collaborative filters in an online newspaper. Proceedings of ACM SIGIR Workshop on Recommender Systems: Implementation and Evaluation. Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61-70. doi:10.1145/138859.138867 Han, P., Xie, B., Yang, F., & Shen, R. (2004). A scalable P2P recommender system based on distributed collaborative filtering. Expert Systems with Applications, 27(2), 203-210. doi:10.1016/j.eswa.2004.01.003 Hill, W., Stead, L., Rosenstein, M., & Furnas, G. (1995). Recommending and evaluating choices in a virtual community of use. CHI `95 Proceedings of the SIGCHI Conference on Human Factors in computing systems, pp. 194-201. doi:10.1145/223904.223929 Huang, Z., Chen, H., & Zeng, D. (2004). Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Transactions on Information Systems, 22(1), 116-142. doi:10.1145/963770.963775 Langley, P., Iba, W., & Thompson, K. (1992). An analysis of Bayesian classifiers. In William R. Swartout (Ed.), Proceedings of the 10th National Conference on Artificial Intelligence (pp. 223-228). San Jose, CA: AAAI Press. Lemire, D., & Maclachlan, A. (2005). Slope one predictors for online rating-based collaborative filtering. Proceedings of SIAM Data Mining Conference, pp. 471-475. Li, Q., & Kim, B. M. (2003). Clustering Approach for Hybrid Recommender System. Proceedings of the 2003 IEEE/WIC International Conference on Web Intelligence, pp. 33-38. doi:10.1109/WI.2003.1241167 Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76-80. doi:10.1109/MIC.2003.1167344 Melville, P., & Sindhwani, V. (2010). Recommender systems. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of machine learning (pp. 829-838). Boston, MA: Springer. Mobasher, B., Cooley, R., & Srivastava, J. (2000). Automatic personalization based on Web usage mining. Communications of the ACM, 43(8), 142-151. doi:10.1145/345124.345169 Papagelis, M., & Plexousakis, D. (2005). Qualitative analysis of user-based and item-based prediction algorithms for recommendation agents. Engineering Applications of Artificial Intelligence, 18(7), 781-789. doi:10.1016/j.engappai.2005.06.010 Pazzani, M. J. (1999). A Framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 13(5-6), 393-408. doi:10.1023/A:1006544522159 Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M., Konstan, J. A., & Riedl, J. (2002). Getting to know you: Learning new user preferences in recommender systems. Proceedings of the 7th International Conference on Intelligent User Interfaces, pp. 127-134. doi:10.1145/502716.502737 Resnick, P., Iacovou , N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: an open architecture for collaborative filtering of Netnews. Proceedings of the 1994 ACM conference on Computer supported cooperative work, pp. 175-186. doi:10.1145/192844.192905 Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58. doi:10.1145/245108.245121 Ricci, F. (2002). Travel recommender systems. IEEE Intelligent Systems, 17(6), 55-57. Salton, G., & McGill, M. J. (1986). Introduction to Modern Information Retrieval. New York, NY: McGraw-Hill. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000a). Application of dimensionality reduction in recommender system -- a case study (Technical Reports 00-043). Retrieved from University of Minnesota Computer Science Technical Reports Archive website: http://www.cs.umn.edu/tech_reports_upload/tr2000/00-043.pdf Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000b). Analysis of recommendation algorithms for e-commerce. Proceedings of the 2nd ACM Conference on Electronic Commerce, pp. 158-167. doi:10.1145/352871.352887 Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International Conference on World Wide Web, pp. 285-295. doi:10.1145/371920.372071 Sarwar, B., Konstan, J., Borchers, A., Herlocker, J., Miller, B., & Riedl, J. (1998). Using filtering agents to improve prediction quality in the GroupLens research collaborative filtering system. Proceedings of the 1998 ACM conference on Computer supported cooperative work, pp. 345-354. doi:10.1145/289444.289509 Schafer, J. B., Konstan, J., & Riedl, J. (1999). Recommender systems in e-commerce. Proceedings of the 1st ACM Conference on Electronic Commerce, pp. 158-166. doi:10.1145/336992.337035 Shardanand, U., & Maes, P. (1995). Social information filtering: algorithms for automating “word of mouth”. CHI `95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 210-217. doi:10.1145/223904.223931 Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002). Methods and Metrics for Cold-Start Recommendations. Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 253-260. doi:10.1145/564376.564421 Shin, Y., & Liu, D. (2008). Product recommendation approaches: Collaborative filtering via customer lifetime value and customer demands. Expert Systems with Applications, 35(1-2), 350-360. doi:10.1016/j.eswa.2007.07.055 Su, J. H., Wang, B. W., Hsiao, C. Y., & Tseng, V. S. (2010). Personalized rough-set-based recommendation by integrating multiple contents and collaborative information. Information Sciences, 180(1), 113-131. doi:10.1016/j.ins.2009.08.005 Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques, Advances in Artificial Intelligence, 2009, 1-19. doi:10.1155/2009/421425 Van Rijsbergen, C. J. (1979). Information Retrieval. London, England: Butterworths. Retrieved from http://www.dcs.gla.ac.uk/Keith/Preface.html Xue, G., Lin, C., Yang, Q., Xi, W., Zeng, H., Yu, Y., & Chen, Z. (2005). Scalable collaborative filtering using cluster-based smoothing. Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 114-121. doi:10.1145/1076034.1076056 Yuan, X., & Wu, P. (2012). Content-based recommendation model in micro-blogs community. Proceedings of 2012 International Conference on Management of e-Commerce and e-Government, pp. 165-168. doi:10.1109/ICMeCG.2012.40 Zhang, D. J. (2009). An item-based collaborative filtering recommendation algorithm using slope one scheme smoothing. In Li, M., Yu F., Shu, J., & Chen, Z. G. (Eds.), Proceedings of the 2009 Second International Symposium on Electronic Commerce and Security: Vol. 2. (pp. 215-217). Washington, DC: IEEE Computer Society. doi:10.1109/ISECS.2009.173 描述 碩士
國立政治大學
資訊管理研究所
99356035
101資料來源 http://thesis.lib.nccu.edu.tw/record/#G0993560351 資料類型 thesis dc.contributor.advisor 李有仁 zh_TW dc.contributor.author (Authors) 張玉佩 zh_TW dc.creator (作者) 張玉佩 zh_TW dc.date (日期) 2012 en_US dc.date.accessioned 2-Sep-2013 16:02:19 (UTC+8) - dc.date.available 2-Sep-2013 16:02:19 (UTC+8) - dc.date.issued (上傳時間) 2-Sep-2013 16:02:19 (UTC+8) - dc.identifier (Other Identifiers) G0993560351 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/59303 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 資訊管理研究所 zh_TW dc.description (描述) 99356035 zh_TW dc.description (描述) 101 zh_TW dc.description.abstract (摘要) 協同過濾是電子商務中最常被使用也是最成功的推薦技術,但隨著電子商務的發展,網站使用者與商品數也迅速成長,使得使用者相關資料稀疏(Data sparsity)而嚴重影響推薦品質。對於新使用者與新商品,協同過濾也無法提供準確的推薦。為改善以上問題,本研究使用Lemire與Maclachlan (2005)所提出的Slope One演算架構及資料探勘方法中的單純貝式分類器(Naïve bayes classifier)來解決資料稀疏性和冷開始(Cold-start)問題。同時,考量到運算成本,將推薦系統架構分為離線預處理階段和線上預測階段,以避免當使用者數目和商品越來越大時運算成本超過實際可接受程度。 本研究採用MovieLens資料庫的資料集,包含943位使用者與1,682部電影,共10萬筆評比資料,評比分數範圍從1到5分,其中每位使用者至少評比20部以上電影。實驗評估方法則採用平均絕對誤差(MAE)來計算本研究的推薦系統對消費者喜好預測的準確度。 本研究希望所提出的個人化推薦系統能改善傳統協同過濾推薦系統的推薦品質,減少資料稀疏所造成的推薦誤差,更準確的推薦使用者感興趣的物品,以幫助使用者更有效率的進行線上消費,提高顧客滿意度與忠誠度,也提升電子商務網站營業效益。 zh_TW dc.description.tableofcontents 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 2 第三節 研究目的 3 第四節 研究流程 3 第二章 文獻探討 5 第一節 推薦系統 5 2.1.1 推薦系統定義 5 2.1.2 推薦系統分類 7 第二節 協同過濾 10 2.2.1 協同過濾定義 10 2.2.2 協同過濾限制 11 2.2.3 相似度測量 14 2.2.4 產生推薦 17 第三章 研究架構 18 第一節 系統架構 18 第二節 Slope one 20 第三節 單純貝式分類 20 3.3.1 貝式分類器 20 3.3.2 單純貝式分類器 21 第四章 實驗設計與結果評估 22 第一節 實驗設計 23 4.1.1 相似度選擇 23 4.1.2 評分預測計算方式 23 4.1.3 實驗流程 24 第二節 資料值填補方式比較 29 第三節 不同比例冷開始使用者 30 第四節 不同比例新使用者 31 第五節 使用者分群 33 第五章 結論與建議、研究限制與未來研究方向 35 第一節 結論與建議 35 第二節 研究限制與未來研究方向 36 參考文獻 38 附錄一 42 附錄二 45 表目錄 表 2-1 推薦系統相關定義 5 表 2-2 Slope one評分極端值示意 12 表 2-3 皮爾森係數產生分母為零之錯誤 15 表 4-1 評分預測計算方式 24 表 4-2 填補後資料稀疏程度 30 表 5-1 實驗結果總結 35 圖目錄 圖 1-1 研究流程 4 圖 2-1 線性組合圖式 9 圖 2-2 循序組合圖式 9 圖 2-3 協同過濾推薦系統處理程序 11 圖 2-4 Slope one 設計基礎概念示意 12 圖 2-5 餘弦相似度問題示意 16 圖 3-1 研究架構 18 圖 4-1-1 不同相似度之CF結果預測準確度衡量比較 23 圖 4-1-2 第一階段實驗流程圖 25 圖 4-1-3 第二階段實驗流程圖 26 圖 4-1-4 第三階段實驗流程圖Ⅰ-以Slope one填補舊使用者評分矩陣 27 圖 4-1-5 第三階段實驗流程圖Ⅱ-以單純貝式分類器填補舊使用者評分矩陣 27 圖 4-1-6 使用者分群示意圖 28 圖 4-1-7 第四階段實驗流程圖Ⅰ-以Slope one填補使用者評分矩陣 28 圖 4-1-8 第四階段實驗流程圖Ⅱ-以單純貝式分類填補使用者評分矩陣 28 圖 5-1 修改後研究架構 36 圖 4-2-1 以Slope one填補評分矩陣空缺值的CF預測準確度衡量比較 45 圖 4-2-2 以單純貝式分類器填補評分矩陣空缺值的CF預測準確度衡量比較 45 圖 4-2-3 SOCF、NBCF和傳統CF的預測準確度比較 46 圖 4-3-1 20%冷開始使用者之預測準確度比較 46 圖 4-3-2 40%冷開始使用者之預測準確度比較 47 圖 4-3-3 60%冷開始使用者之預測準確度比較 47 圖 4-3-4 80%冷開始使用者之預測準確度比較 48 圖 4-3-5 100%冷開始使用者之預測準確度比較 48 圖 4-4-1 5%新使用者狀況下填補20筆評分資料之預測準確度比較 49 圖 4-4-2 5%新使用者狀況下填補40筆評分資料之預測準確度比較 49 圖 4-4-3 5%新使用者狀況下填補60筆評分資料之預測準確度比較 49 圖 4-4-4 5%新使用者狀況下填補80筆評分資料之預測準確度比較 50 圖 4-4-5 5%新使用者狀況下填補100筆評分資料之預測準確度比較 50 圖 4-4-6 5%新使用者狀況下填補20至100筆評分時SOCF-PCC之預測準確度 50 圖 4-4-7 10%新使用者狀況下填補20筆評分資料之預測準確度比較 51 圖 4-4-8 10%新使用者狀況下填補40筆評分資料之預測準確度比較 51 圖 4-4-9 10%新使用者狀況下填補60筆評分資料之預測準確度比較 51 圖 4-4-10 10%新使用者狀況下填補80筆評分資料之預測準確度比較 52 圖 4-4-11 10%新使用者狀況下填補100筆評分資料之預測準確度比較 52 圖 4-4-12 10%新使用者狀況下填補20至100筆評分時SOCF-PCC之預測準確度 52 圖 4-4-13 15%新使用者狀況下填補20筆評分資料之預測準確度比較 53 圖 4-4-14 15%新使用者狀況下填補40筆評分資料之預測準確度比較 53 圖 4-4-15 15%新使用者狀況下填補60筆評分資料之預測準確度比較 53 圖 4-4-16 15%新使用者狀況下填補80筆評分資料之預測準確度比較 54 圖 4-4-17 15%新使用者狀況下填補100筆評分資料之預測準確度比較 54 圖 4-4-18 15%新使用者狀況下填補20至100筆評分時SOCF-PCC之預測準確度 54 圖 4-4-19 20%新使用者狀況下填補20筆評分資料之預測準確度比較 55 圖 4-4-20 20%新使用者狀況下填補40筆評分資料之預測準確度比較 55 圖 4-4-21 20%新使用者狀況下填補60筆評分資料之預測準確度比較 55 圖 4-4-22 20%新使用者狀況下填補80筆評分資料之預測準確度比較 56 圖 4-4-23 20%新使用者狀況下填補100筆評分資料之預測準確度比較 56 圖 4-4-24 20%新使用者狀況下填補20至100筆評分時CF-PIP之預測準確度 56 圖 4-5-1 將使用者分為3個群集狀況下之預測準確度比較 57 圖 4-5-2 將使用者分為4個群集狀況下之預測準確度比較 57 圖 4-5-3 將使用者分為5個群集狀況下之預測準確度比較 58 zh_TW dc.language.iso en_US - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0993560351 en_US dc.subject (關鍵詞) 推薦系統 zh_TW dc.subject (關鍵詞) 協同過濾 zh_TW dc.subject (關鍵詞) 資料稀疏性 zh_TW dc.subject (關鍵詞) 冷開始 zh_TW dc.title (題名) 改良式協同過濾推薦系統之架構與評估 zh_TW dc.title (題名) A framework and evaluation of recommendation system using modified collaborative filtering method en_US dc.type (資料類型) thesis en dc.relation.reference (參考文獻) 任晓丽、刘鲁(民96)。推荐系统研究进展及展望。取自:中国科技论文在线,http://www.paper.edu.cn/index.php/default/releasepaper/content/200712-478 張哲銘 (民92)。以使用者偏好分類為基礎之網際資源推薦系統(未出版之碩士論文)。國立台灣大學,台北市。 黃君德 (民91)。電子商業網站產品推薦系統的研究與實作(未出版之碩士論文)。國立台灣大學,台北市。 楊亨利、黃仁智(民97)。具整體觀點考量之推薦系統:以家庭親子為例,中華管理評論國際學報,11(3),1-26。 Ahn, H. J. (2008). A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem. Information Sciences, 178(1), 37-51. doi:10.1016/j.ins.2007.07.024 Alton-Scheidl, R., Ekhall, J., van Geloven, O., Kovács, L., Micsik, A., Lueg, C.,…Wheeler, R. (1999). SELECT: social and collaborative filtering of web documents and news. Proceedings of the 5th ERCIM Workshop on User Interfaces for All, pp. 23-27. Armstrong, R., Freitag. D., Joachims, T. & Mitchell, T. (1995). WebWatcher: a learning apprentice for the world wide web. Proceedings of the AAAI Spring Symposium on Information Gathering from Heterogeneous, Distributed Environments, pp. 6-12. Balabanović, M., & Shoham, Y. (1997). Fab: content-based, collaborative recommendation. Communications of the ACM, 40(3), 66-72. doi:10.1145/245108.245124 Bobadilla, J., Ortega, F., & Hernando, A. (2012). A collaborative filtering similarity measure based on singularities. Information Processing & Management, 48(2), 204-217. doi:10.1016/j.ipm.2011.03.007 Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative filtering. In Gregory F. Cooper & Serafín Moral (Eds.), Proceedings of the 4th Conference on Uncertainty in Artificial Intelligence (pp. 43-52). San Francisco, CA: Morgan Kaufmann. Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combining content-based and collaborative filters in an online newspaper. Proceedings of ACM SIGIR Workshop on Recommender Systems: Implementation and Evaluation. Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61-70. doi:10.1145/138859.138867 Han, P., Xie, B., Yang, F., & Shen, R. (2004). A scalable P2P recommender system based on distributed collaborative filtering. Expert Systems with Applications, 27(2), 203-210. doi:10.1016/j.eswa.2004.01.003 Hill, W., Stead, L., Rosenstein, M., & Furnas, G. (1995). Recommending and evaluating choices in a virtual community of use. CHI `95 Proceedings of the SIGCHI Conference on Human Factors in computing systems, pp. 194-201. doi:10.1145/223904.223929 Huang, Z., Chen, H., & Zeng, D. (2004). Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Transactions on Information Systems, 22(1), 116-142. doi:10.1145/963770.963775 Langley, P., Iba, W., & Thompson, K. (1992). An analysis of Bayesian classifiers. In William R. Swartout (Ed.), Proceedings of the 10th National Conference on Artificial Intelligence (pp. 223-228). San Jose, CA: AAAI Press. Lemire, D., & Maclachlan, A. (2005). Slope one predictors for online rating-based collaborative filtering. Proceedings of SIAM Data Mining Conference, pp. 471-475. Li, Q., & Kim, B. M. (2003). Clustering Approach for Hybrid Recommender System. Proceedings of the 2003 IEEE/WIC International Conference on Web Intelligence, pp. 33-38. doi:10.1109/WI.2003.1241167 Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76-80. doi:10.1109/MIC.2003.1167344 Melville, P., & Sindhwani, V. (2010). Recommender systems. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of machine learning (pp. 829-838). Boston, MA: Springer. Mobasher, B., Cooley, R., & Srivastava, J. (2000). Automatic personalization based on Web usage mining. Communications of the ACM, 43(8), 142-151. doi:10.1145/345124.345169 Papagelis, M., & Plexousakis, D. (2005). Qualitative analysis of user-based and item-based prediction algorithms for recommendation agents. Engineering Applications of Artificial Intelligence, 18(7), 781-789. doi:10.1016/j.engappai.2005.06.010 Pazzani, M. J. (1999). A Framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 13(5-6), 393-408. doi:10.1023/A:1006544522159 Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M., Konstan, J. A., & Riedl, J. (2002). Getting to know you: Learning new user preferences in recommender systems. Proceedings of the 7th International Conference on Intelligent User Interfaces, pp. 127-134. doi:10.1145/502716.502737 Resnick, P., Iacovou , N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: an open architecture for collaborative filtering of Netnews. Proceedings of the 1994 ACM conference on Computer supported cooperative work, pp. 175-186. doi:10.1145/192844.192905 Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58. doi:10.1145/245108.245121 Ricci, F. (2002). Travel recommender systems. IEEE Intelligent Systems, 17(6), 55-57. Salton, G., & McGill, M. J. (1986). Introduction to Modern Information Retrieval. New York, NY: McGraw-Hill. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000a). Application of dimensionality reduction in recommender system -- a case study (Technical Reports 00-043). Retrieved from University of Minnesota Computer Science Technical Reports Archive website: http://www.cs.umn.edu/tech_reports_upload/tr2000/00-043.pdf Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000b). Analysis of recommendation algorithms for e-commerce. Proceedings of the 2nd ACM Conference on Electronic Commerce, pp. 158-167. doi:10.1145/352871.352887 Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International Conference on World Wide Web, pp. 285-295. doi:10.1145/371920.372071 Sarwar, B., Konstan, J., Borchers, A., Herlocker, J., Miller, B., & Riedl, J. (1998). Using filtering agents to improve prediction quality in the GroupLens research collaborative filtering system. Proceedings of the 1998 ACM conference on Computer supported cooperative work, pp. 345-354. doi:10.1145/289444.289509 Schafer, J. B., Konstan, J., & Riedl, J. (1999). Recommender systems in e-commerce. Proceedings of the 1st ACM Conference on Electronic Commerce, pp. 158-166. doi:10.1145/336992.337035 Shardanand, U., & Maes, P. (1995). Social information filtering: algorithms for automating “word of mouth”. CHI `95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 210-217. doi:10.1145/223904.223931 Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002). Methods and Metrics for Cold-Start Recommendations. Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 253-260. doi:10.1145/564376.564421 Shin, Y., & Liu, D. (2008). Product recommendation approaches: Collaborative filtering via customer lifetime value and customer demands. Expert Systems with Applications, 35(1-2), 350-360. doi:10.1016/j.eswa.2007.07.055 Su, J. H., Wang, B. W., Hsiao, C. Y., & Tseng, V. S. (2010). Personalized rough-set-based recommendation by integrating multiple contents and collaborative information. Information Sciences, 180(1), 113-131. doi:10.1016/j.ins.2009.08.005 Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques, Advances in Artificial Intelligence, 2009, 1-19. doi:10.1155/2009/421425 Van Rijsbergen, C. J. (1979). Information Retrieval. London, England: Butterworths. Retrieved from http://www.dcs.gla.ac.uk/Keith/Preface.html Xue, G., Lin, C., Yang, Q., Xi, W., Zeng, H., Yu, Y., & Chen, Z. (2005). Scalable collaborative filtering using cluster-based smoothing. Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 114-121. doi:10.1145/1076034.1076056 Yuan, X., & Wu, P. (2012). Content-based recommendation model in micro-blogs community. Proceedings of 2012 International Conference on Management of e-Commerce and e-Government, pp. 165-168. doi:10.1109/ICMeCG.2012.40 Zhang, D. J. (2009). An item-based collaborative filtering recommendation algorithm using slope one scheme smoothing. In Li, M., Yu F., Shu, J., & Chen, Z. G. (Eds.), Proceedings of the 2009 Second International Symposium on Electronic Commerce and Security: Vol. 2. (pp. 215-217). Washington, DC: IEEE Computer Society. doi:10.1109/ISECS.2009.173 zh_TW