學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 以事件關聯電位(ERP)探索睡眠對於配對學習的促進效果
Event-related potential (ERP) evidence of sleep facilitating effect on paired-associates learning
作者 林俊成
Lin, Chun Cheng
貢獻者 楊建銘
Yang, Chien Ming
林俊成
Lin, Chun Cheng
關鍵詞 睡眠
慢波睡眠
睡眠剝奪
學習
記憶
記憶固化
陳述性記憶
記憶再認
配對學習
新聯結
事件關聯電位
N400
sleep
slow wave sleep
sleep deprivation
learning
memory
consolidation
declarative memory
new association
recognition memory
paired-associates learning
event-related potential
ERP
N400
日期 2010
上傳時間 3-Sep-2013 13:29:05 (UTC+8)
摘要 睡眠是否能鞏固陳述性記憶目前尚無定論。過去研究一致較支持睡眠能增進相關字詞配對的學習,但睡眠是否能增進無關字詞配對的學習,目前仍存在不一致的發現。造成該差異的原因可能是:過去研究多採用的行為測量指標,或許無法充分反映出睡眠促進記憶新聯結(new association)產生的效果。事件關聯電位(Event-related potential, ERP)的N400反映出語意記憶系統內每個字詞彼此的相關程度,因此本研究使用N400來探討睡眠強化無關字詞配對形成新聯結的電生理歷程。30名健康受試者(15位男性與15位女性,平均年齡為20.7歲) 隨機分派至睡眠組或清醒組,第一晚在學習80組無關字詞配對後,接受第一次再認記憶測驗,同時進行ERP的記錄。隨後睡眠組接受睡眠記錄(PSG),清醒組則接受整晚的睡眠剝奪,兩組受試者皆在第二晚給予8小時的躺床時間,使他們有機會充足睡眠以恢復精神,於第三天早上接受第二次再認記憶測驗及ERP記錄。在記憶測驗時,無關字詞配對分別組成促發字(prime)與目標字(target)先後出現,受試者需判斷先後出現的字詞是否為先前學過的完整配對,在測試階段同時記錄腦電波訊號。行為測量結果顯示睡眠過後,再認表現的正確率顯著提高且反應時間明顯縮短,但在睡眠剝奪後則顯示相反的結果。電生理測量發現睡眠組的N400振幅在睡眠過後較清醒組明顯降低。另外,睡眠組較清醒組有較高的正確率與較短的反應時間。睡眠組再認測驗的進步量與慢波睡眠呈現負相關,而慢波睡眠與第一次再認測驗的正確率呈現正相關,根據二階段睡眠記憶鞏固理論,慢波睡眠涉及重新組織記憶的歷程(系統性固化),因此學習表現較佳的受試者出現較多的深度睡眠,可能反應其經歷系統性固化。本研究結果顯示睡眠對於產生新聯結有明顯的增強效果,而且慢波睡眠可能參與了記憶表徵重新分配的歷程。
The effect of sleep on declarative memory remains contradictory. Prior studies show that sleep benefits the learning of related word pairs consistently, while the learning of unrelated word pairs, however, show mixed results. It is possible that the behavioral measures used in previous studies are not sensitive enough to reveal subtle effects of sleep on new associations. N400, an event-related potential (ERP) component reflecting relatedness among words in semantic memory, was used in the present study to investigate the effect of sleep on the physiological process underlying new associations of unrelated word pairs. Participants were randomly assigned to either a Sleep group or a Wakefulness group. In the learning phase, participants were asked to memorize 80 visually presented unrelated word-pairs, followed by a pre-test phase with a recognition task. The participants then underwent either a night of nocturnal sleep (Sleep group) or sleep deprivation (Wakefulness group). A post-test was conducted after subjects had one night of recovery sleep. During both pre-test and post-test sessions, prime and target words were presented successively for the subjects to judge whether they were among the original pairs or new pairs. ERPs were recorded during both test phases. The behavioral data show that differences in improvement of recognition and decreases in reaction time from pre-test to post-test are significant between Sleep and Wakefulness groups. N400 peak amplitude attenuated significantly after sleep but not after wakefulness. The improvement of recognition negatively correlates with slow wave sleep (SWS). The number of word-pairs acquired in the learning phase, however, correlates positively with SWS. According to the two-stage memory consolidation theory of sleep, SWS involves in redistribution of memory (systematic consolidation). Therefore, that the participants with high performance showed more SWS may reflect the process of systematic consolidation. These results suggest that the sleep has an enhancing effect on the formation of novel association, and SWS may be involved in the process of redistributing memory representations.
參考文獻 Agnew, H. W., Jr., Webb, W. B., & Williams, R. L. (1966). The first night effect: an EEG study of sleep. Psychophysiology, 2(3), 263-266.
Anderson, J. E., & Holcomb, P. J. (1995). Auditory and visual semantic priming using different stimulus onset asynchronies: an event-related brain potential study. Psychophysiology, 32(2), 177-190.
Ashcraft, M. H. (1994). Semantic Long-term memory. In M. H. Ashcraft (Ed.), Human Memory and Cognition (pp. 253-307). New York: Harpercollins College.
Aston-Jones, G., & Bloom, F. E. (1981). Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. Journal of Neuroscience, 1(8), 876-886.
Atienza, M., Cantero, J. L., & Dominguez-Marin, E. (2002). Mismatch negativity (MMN): an objective measure of sensory memory and long-lasting memories during sleep. International Journal of Psychophysiology, 46(3), 215-225.
Atienza, M., Cantero, J. L., & Stickgold, R. (2004). Posttraining sleep enhances automaticity in perceptual discrimination. Journal of Cognitive Neuroscience, 16(1), 53-64.
Aubrey, J., Smith, C., Tweed, S., & Nader, R. (1999). Cognitive and motor procedural tasks are dissociated in REM and Stage 2 sleep. Sleep Research Online, 2(Supplement 1), 220.
Backhaus, J., & Junghanns, K. (2006). Daytime naps improve procedural motor memory. Sleep Medicine, 7(6), 508-512.
Barrett, T. R., & Ekstrand, B. R. (1972). Effect of sleep on memory. 3. Controlling for time-of-day effects. Journal of Experimental Psychology, 96(2), 321-327.
Benson, K., & Feinberg, I. (1977). The beneficial effect of sleep in an extended Jenkins and Dallenbach paradigm. Psychophysiology, 14(4), 375-384.
Bentin, S., McCarthy, G., & Wood, C. C. (1985). Event-related potentials, lexical decision and semantic priming. Electroencephalography and Clinical Neurophysiology, 60(4), 343-355.
Besson, M., Kutas, M., & Van Petten, C. (1992). An event-related potential (ERP) analysis of semantic congruity and repetition effects in sentences. Journal of Cognitive Neuroscience, 4(2), 132-149.
Born, J. (2010). Slow-wave sleep and the consolidation of long-term memory. The World Journal of Biological Psychiatry 11 Suppl 1, 16-21.
Born, J., & Wilhelm, I. (2011). System consolidation of memory during sleep. Psychological Research. Advance online publication. doi: 10.1007/s00426-011-0335-6
Brualla, J., Romero, M. F., Serrano, M., & Valdizan, J. R. (1998). Auditory event-related potentials to semantic priming during sleep. Electroencephalography and Clinical Neurophysiology, 108(3), 283-290.
Buzsaki, G. (1989). Two-stage model of memory trace formation: a role for "noisy" brain states. Neuroscience, 31(3), 551-570.
Canas, J. J. (1990). Associative strength effects in the lexical decision task. Quarterly Journal of Experimental Psychology. A, Human Experimental psychology, 42(1), 121-145.
Castaldo, V., Krynicki, V., & Goldstein, J. (1974). Sleep stages and verbal memory. Perceptual and Motor Skills, 39, 1023-1030.
Chernik, D. A. (1972). Effect of REM sleep deprivation on learning and recall by humans. Perceptual and Motor Skills, 34(1), 283-294.
Chinese Knowledge and Information Processing Group (1993). The CKIP Categorical Classification of Mandarin Chinese (In Chinese). CKIP Technical Report no. 93-05.
Chwilla, D. J., Brown, C. M., & Hagoort, P. (1995). The N400 as a function of the level of processing. Psychophysiology, 32(3), 274-285.
Chwilla, D. J., & Kolk, H. H. (2005). Accessing world knowledge: evidence from N400 and reaction time priming. Brain Research. Cognitive Brain Research, 25(3), 589-606.
Clemens, Z., Fabo, D., & Halasz, P. (2005). Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience, 132(2), 529-535.
Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407-428.
De Koninck, J., Lorrain, D., Christ, G., Proulx, G., & Coulombe, D. (1989). Intensive language learning and increases in rapid eye movement sleep: evidence of a performance factor. International Journal of Psychophysiology, 8(1), 43-47.
Deacon, D., Dynowska, A., Ritter, W., & Grose-Fifer, J. (2004). Repetition and semantic priming of nonwords: implications for theories of N400 and word recognition. Psychophysiology, 41(1), 60-74.
Deacon, D., Hewitt, S., Yang, C., & Nagata, M. (2000). Event-related potential indices of semantic priming using masked and unmasked words: evidence that the N400 does not reflect a post-lexical process. Brain Research: Cognitive Brain Research, 9(2), 137-146.
Deacon, D., Uhm, T. J., Ritter, W., Hewitt, S., & Dynowska, A. (1999). The lifetime of automatic semantic priming effects may exceed two seconds. Brain Research. Cognitive Brain Research, 7(4), 465-472.
Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews. Neuroscience.
Diekelmann, S., Wilhelm, I., & Born, J. (2009). The whats and whens of sleep-dependent memory consolidation. Sleep Medicine Reviews, 13(5), 309-321.
Doyon, J., Penhune, V., & Ungerleider, L. G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41(3), 252-262.
Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nature Reviews. Neuroscience, 1(1), 41-50.
Ekstrand, B. R., Sullivan, M. J., Parker, D. F., & West, J. N. (1971). Spontaneous recovery and sleep. Journal of Experimental Psychology, 88(1), 142-144.
Ellenbogen, J. M., Hulbert, J. C., Stickgold, R., Dinges, D. F., & Thompson-Schill, S. L. (2006). Interfering with theories of sleep and memory: sleep, declarative memory, and associative interference. Current Biology, 16(13), 1290-1294.
Ellenbogen, J. M., Payne, J. D., & Stickgold, R. (2006). The role of sleep in declarative memory consolidation: passive, permissive, active or none? Current Opinion in Neurobiology, 16(6), 716-722.
Empson, J. A., & Clarke, P. R. (1970). Rapid eye movements and remembering. Nature, 227(5255), 287-288.
Ficca, G., Lombardo, P., Rossi, L., & Salzarulo, P. (2000). Morning recall of verbal material depends on prior sleep organization. Behavioural Brain Research, 112(1-2), 159-163.
Ficca, G., & Salzarulo, P. (2004). What in sleep is for memory. Sleep Medicine, 5(3), 225-230.
Fischer, S., Hallschmid, M., Elsner, A. L., & Born, J. (2002). Sleep forms memory for finger skills. Proceedings of the National Academy of Sciences of the United States of America, 99(18), 11987-11991.
Fogel, S. M., & Smith, C. T. (2006). Learning-dependent changes in sleep spindles and Stage 2 sleep. Journal of Sleep Research, 15(3), 250-255.
Fowler, M. J., Sullivan, M. J., & Ekstrand, B. R. (1973). Sleep and memory. Science, 179(70), 302-304.
Franklin, M. S., Dien, J., Neely, J. H., Huber, E., & Waterson, L. D. (2007). Semantic priming modulates the N400, N300, and N400RP. Clinical Neurophysiology, 118(5), 1053-1068.
Friederici, A. D. (1997). Neurophysiological aspects of language processing. Clinical Neuroscience, 4(2), 64-72.
Gais, S., Albouy, G., Boly, M., Dang-Vu, T. T., Darsaud, A., Desseilles, M., et al. (2007). Sleep transforms the cerebral trace of declarative memories. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18778-18783.
Gais, S., & Born, J. (2004). Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation. Proceedings of the National Academy of Sciences of the United States of America, 101(7), 2140-2144.
Gais, S., Lucas, B., & Born, J. (2006). Sleep after learning aids memory recall. Learning & Memory, 13(3), 259-262.
Gais, S., Molle, M., Helms, K., & Born, J. (2002). Learning-dependent increases in sleep spindle density. Journal of Neuroscience, 22(15), 6830-6834.
Gais, S., Plihal, W., Wagner, U., & Born, J. (2000). Early sleep triggers memory for early visual discrimination skills. Nature Neuroscience, 3(12), 1335-1339.
Gold, B. T., Balota, D. A., Jones, S. J., Powell, D. K., Smith, C. D., & Andersen, A. H. (2006). Dissociation of automatic and strategic lexical-semantics: functional magnetic resonance imaging evidence for differing roles of multiple frontotemporal regions. The Journal of Neuroscience, 26(24), 6523-6532.
Goshen-Gottstein, Y., & Moscovitch, M. (1995a). Repetition priming effects for newly formed associations are perceptually based: evidence from shallow encoding and format specificity. Journal of Experimental Psychology: Learning, Memory and Cognition 21(5), 1249-1262.
Goshen-Gottstein, Y., & Moscovitch, M. (1995b). Repetition priming for newly formed and preexisting associations: perceptual and conceptual influences. Journal of Experimental Psychology: Learning, Memory and Cognition 21(5), 1229-1248.
Graf, P., & Schacter, D. L. (1985). Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of Experimental Psychology: Learning, Memory and Cognition 11(3), 501-518.
Grosvenor, A., & Lack, L. C. (1984). The effect of sleep before or after learning on memory. Sleep, 7(2), 155-167.
Haider, M., Spong, P., & Lindsley, D. B. (1964). Attention, vigilance, and cortical evoked-potentials in humans. Science, 145, 180-182.
Hebb, D. O. (1949). The orgnizaion of behavior. New York: John Wiley and Sons.


Hill, H., Ott, F., & Weisbrod, M. (2005). SOA-dependent N400 and P300 semantic priming effects using pseudoword primes and a delayed lexical decision. International Journal of Psychophysiology, 56(3), 209-221.
Hill, H., Strube, M., Roesch-Ely, D., & Weisbrod, M. (2002). Automatic vs. controlled processes in semantic priming--differentiation by event-related potentials. International Journal of Psychophysiology, 44(3), 197-218.
Hobson, J. A., McCarley, R. W., & Wyzinski, P. W. (1975). Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science, 189(4196), 55-58.
Holcomb, P. J. (1988). Automatic and attentional processing: an event-related brain potential analysis of semantic priming. Brain and Language, 35(1), 66-85.
Holcomb, P. J., & Neville, H. J. (1990). Auditory and visual semantic priming in lexical decision: A comparison using event-related brain potentials. Language and Cognitive Processes, 5(4), 281-312.
Jenkins, J. G., & Dallenbach, K. M. (1924). Obliviscence during sleep and waking The American Journal of Psychology, 35(4), 605-612.
Kametani, H., & Kawamura, H. (1990). Alterations in acetylcholine release in the rat hippocampus during sleep-wakefulness detected by intracerebral dialysis. Life Sciences, 47(5), 421-426.
Karni, A., Tanne, D., Rubenstein, B. S., Askenasy, J. J., & Sagi, D. (1994). Dependence on REM sleep of overnight improvement of a perceptual skill. Science, 265(5172), 679-682.
Kounios, J., & Holcomb, P. J. (1992). Structure and process in semantic memory: evidence from event-related brain potentials and reaction times. Journal of Experimental Psychology: General 121(4), 459-479.
Kuperberg, G. R., Lakshmanan, B. M., Greve, D. N., & West, W. C. (2008). Task and semantic relationship influence both the polarity and localization of hemodynamic modulation during lexico-semantic processing. Human Brain Mapping, 29(5), 544-561.
Kuriyama, K., Stickgold, R., & Walker, M. P. (2004). Sleep-dependent learning and motor-skill complexity. Learning & Memory, 11(6), 705-713.
Kutas, M., & Federmeier, K. D. (2000). Electrophysiology reveals semantic memory use in language comprehension. Trends in Cognitive Sciences, 4(12), 463-470.
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621-647.
Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: brain potentials reflect semantic incongruity. Science, 207(4427), 203-205.
Kutas, M., & Iragui, V. (1998). The N400 in a semantic categorization task across 6 decades. Electroencephalography and Clinical Neurophysiology, 108(5), 456-471.
Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: (de)constructing the N400. Nature Reviews. Neuroscience, 9(12), 920-933.
Lewin, I., & Glaubman, H. (1975). The effect of REM deprivation: is it detrimental, beneficial, or neutral? Psychophysiology, 12(3), 349-353.
Lin, C. C., & Yang, C. M. (2010). Event-related potential indices of new word association following intensive learning of unrelated word-pairs. Poster presented at the 49th Annual Meeting of the Taiwanese Psychological Association.
Lund, H. G., Reider, B. D., Whiting, A. B., & Prichard, J. R. (2010). Sleep patterns and predictors of disturbed sleep in a large population of college students. Journal of Adolescent Health, 46(2), 124-132.
Lydic, R., & Baghdoyan, H. A. (1998). Handbook of Behavioral State Control: Cellular and Molecular Mechanisms: Boca Raton, FL: CRC Press.
Maquet, P. (2001). The role of sleep in learning and memory. Science, 294(5544), 1048-1052.
Maquet, P., Laureys, S., Peigneux, P., Fuchs, S., Petiau, C., Phillips, C., et al. (2000). Experience-dependent changes in cerebral activation during human REM sleep. Nature Neuroscience, 3(8), 831-836.
Maquet, P., Schwartz, S., Passingham, R., & Frith, C. (2003). Sleep-related consolidation of a visuomotor skill: brain mechanisms as assessed by functional magnetic resonance imaging. Journal of Neuroscience, 23(4), 1432-1440.
Marrosu, F., Portas, C., Mascia, M. S., Casu, M. A., Fa, M., Giagheddu, M., et al. (1995). Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats. Brain Research, 671(2), 329-332.
Marshall, L., & Born, J. (2007). The contribution of sleep to hippocampus-dependent memory consolidation. Trends in Cognitive Sciences, 11(10), 442-450.
Mazzoni, G., Gori, S., Formicola, G., Gneri, C., Massetani, R., Murri, L., et al. (1999). Word recall correlates with sleep cycles in elderly subjects. Journal of Sleep Research, 8(3), 185-188.
McKone, E., & Slee, J. A. (1997). Explicit contamination in "implicit" memory for new associations. Memory & cognition, 25(3), 352-366.
Meienberg, P. (1977). The tonic aspects of human REM sleep during long-term intensive verbal learning. Physiological Psychology, 5, 250-256.
Mograss, M., Godbout, R., & Guillem, F. (2006). The ERP old-new effect: A useful indicator in studying the effects of sleep on memory retrieval processes. Sleep, 29(11), 1491-1500.
Mograss, M., Guillem, F., Brazzini-Poisson, V., & Godbout, R. (2009). The effects of total sleep deprivation on recognition memory processes: a study of event-related potential. Neurobiology of Learning and Memory, 91(4), 343-352.
Mograss, M., Guillem, F., & Godbout, R. (2008). Event-related potentials differentiates the processes involved in the effects of sleep on recognition memory. Psychophysiology.
Näätänen, R., Gaillard, A., & Mäntysalo, S. (1978). The N1 effect of selective attention reinterpreted. Acta Psychologica, 42, 312-329.
Neely, J. H. (1991). Semantic priming effects in visual word recognition: a selective review of current findings and theories. In D. Besner, Humphreys, G.W. (Ed.), Basic progresses in reading—visual word recognition (pp. 264-333). NJ: Erlbaum, Hillsdale.
Nunez-Pena, M. I., & Honrubia-Serrano, M. L. (2005). N400 and category exemplar associative strength. International Journal of Psychophysiology, 56(1), 45-54.
Pace-Schott, E. F., & Hobson, J. A. (2002). The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nature Reviews. Neuroscience, 3(8), 591-605.
Peigneux, P., Laureys, S., Delbeuck, X., & Maquet, P. (2001). Sleeping brain, learning brain. The role of sleep for memory systems. Neuroreport, 12(18), A111-124.
Peigneux, P., Laureys, S., Fuchs, S., Collette, F., Perrin, F., Reggers, J., et al. (2004). Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron, 44(3), 535-545.
Peters, K. R., Smith, V., & Smith, C. T. (2007). Changes in sleep architecture following motor learning depend on initial skill level. Journal of Cognitive Neuroscience, 19(5), 817-829.
Plihal, W., & Born, J. (1997). Effects of early and late nocturnal sleep on declarative and procedural memory. Journal of Cognitive Neuroscience, 9, 534-547.
Plihal, W., & Born, J. (1999). Effects of early and late nocturnal sleep on priming and spatial memory. Psychophysiology, 36(5), 571-582.
Rasch, B., & Born, J. (2007). Maintaining memories by reactivation. Current Opinion in Neurobiology, 17(6), 698-703.
Rasch, B., Buchel, C., Gais, S., & Born, J. (2007). Odor cues during slow-wave sleep prompt declarative memory consolidation. Science, 315(5817), 1426-1429.
Rauchs, G., Desgranges, B., Foret, J., & Eustache, F. (2005). The relationships between memory systems and sleep stages. Journal of Sleep Research, 14(2), 123-140.
Rechtschaffen, A., & Kales, A. (1968). A manual of standardized terminology, techniques and scoring systems for sleep stages of human subjects: Los Angeles: Brain Information Service/Brain Research Institute.
Rhodes, S. M., & Donaldson, D. I. (2008). Association and not semantic relationships elicit the N400 effect: electrophysiological evidence from an explicit language comprehension task. Psychophysiology, 45(1), 50-59.
Roehm, D., Bornkessel-Schlesewsky, I., Rosler, F., & Schlesewsky, M. (2007). To predict or not to predict: influences of task and strategy on the processing of semantic relations. Journal of Cognitive Neuroscience, 19(8), 1259-1274.
Rossell, S. L., Price, C. J., & Nobre, A. C. (2003). The anatomy and time course of semantic priming investigated by fMRI and ERPs. Neuropsychologia, 41(5), 550-564.
Rudoy, J. D., Voss, J. L., Westerberg, C. E., & Paller, K. A. (2009). Strengthening individual memories by reactivating them during sleep. Science, 326(5956), 1079.
Rugg, M. D. (1985). The effects of semantic priming and work repetition on event-related potentials. Psychophysiology, 22(6), 642-647.
Rugg, M. D. (1990). Event-related brain potentials dissociate repetition effects of high- and low-frequency words. Memory & Cognition, 18(4), 367-379.
Rugg, M. D., & Doyle, M. C. (1994). Event-related potentials and stimulus repetition in indirect and direct. In H. Heinze, T. Munte & G. R. Mangun (Eds.), Cognitive Electrophysiology (pp. 124-148). Boston: Birkhauser.
Schacter, D. L., & Buckner, R. L. (1998). Priming and the brain. Neuron, 20(2), 185-195.
Schmidt, C., Peigneux, P., Muto, V., Schenkel, M., Knoblauch, V., Munch, M., et al. (2006). Encoding difficulty promotes postlearning changes in sleep spindle activity during napping. Journal of Neuroscience, 26(35), 8976-8982.
Sejnowski, T. J., & Destexhe, A. (2000). Why do we sleep? Brain Research, 886(1-2), 208-223.
Shima, K., Nakahama, H., & Yamamoto, M. (1986). Firing properties of two types of nucleus raphe dorsalis neurons during the sleep-waking cycle and their responses to sensory stimuli. Brain Research, 399(2), 317-326.
Smith, C. (1995). Sleep states and memory processes. Behavioural Brain Research, 69(1-2), 137-145.
Smith, C. (2001). Sleep states and memory processes in humans: procedural versus declarative memory systems. Sleep Medicine Reviews, 5(6), 491-506.
Smith, C., & Lapp, L. (1991). Increases in number of REMS and REM density in humans following an intensive learning period. Sleep, 14(4), 325-330.
Smith, C., & MacNeill, C. (1994). Impaired motor memory for a pursuit rotor task following Stage 2 sleep loss in college students. Journal of Sleep Research, 3(4), 206-213.
Smith, C., & Weeden, K. (1990). Post training REMs coincident auditory stimulation enhances memory in humans. Psychiatric Journal of the University of Ottawa, 15(2), 85-90.
Smith, C. T., Nixon, M. R., & Nader, R. S. (2004). Posttraining increases in REM sleep intensity implicate REM sleep in memory processing and provide a biological marker of learning potential. Learning & Memory, 11(6), 714-719.
Squire, L. R. (1986). Mechanisms of memory. Science, 232(4758), 1612-1619.
Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13515-13522.
Stickgold, R. (1998). Sleep: off-line memory reprocessing. Trends in Cognitive Science, 2(12), 484-492.
Stickgold, R. (2004). Dissecting sleep-dependent learning and memory consolidation. Comment on Schabus M et al. Sleep spindles and their significance for declarative memory consolidation. Sleep 2004;27(8):1479-85. Sleep, 27(8), 1443-1445.
Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature, 437(7063), 1272-1278.
Stickgold, R., James, L., & Hobson, J. A. (2000). Visual discrimination learning requires sleep after training. Nature Neuroscience, 3(12), 1237-1238.
Stickgold, R., Scott, L., Rittenhouse, C., & Hobson, J. A. (1999). Sleep-induced changes in associative memory. Journal of Cognitive Neuroscience, 11(2), 182-193.
Stickgold, R., Whidbee, D., Schirmer, B., Patel, V., & Hobson, J. A. (2000). Visual discrimination task improvement: A multi-step process occurring during sleep. Journal of Cognitive Neuroscience, 12(2), 246-254.
Su, J.Y. (2010). Study of Promotion of Procedural Memory Consolidation by Auditory Stimulus during Sleep (Unpublished Master`s Thesis). National Cheng Kung University, Tainan,Taiwan.
Talamini, L. M., Nieuwenhuis, I. L., Takashima, A., & Jensen, O. (2008). Sleep directly following learning benefits consolidation of spatial associative memory. Learning & Memory, 15(4), 233-237.
Tamminen, J., Payne, J. D., Stickgold, R., Wamsley, E. J., & Gaskell, M. G. (2010). Sleep spindle activity is associated with the integration of new memories and existing knowledge. The Journal of Neuroscience, 30(43), 14356-14360.
Tilley, A. J., & Empson, J. A. (1978). REM sleep and memory consolidation. Biological Psychology, 6(4), 293-300.
Tucker, M. A., Hirota, Y., Wamsley, E. J., Lau, H., Chaklader, A., & Fishbein, W. (2006). A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory. Neurobiology of Learning and Memory, 86(2), 241-247.
Tulving, E. (1972). Episodic and semantic memory: New York: Academic Press.
Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. Science, 247(4940), 301-306.
Van Petten, C., Kutas, M., Kluender, R., Mitchiner, M., & Mclsaac, H. (1991). Fractionating the word repetition effect with event-related potentials. Journal of Cognitive Neuroscience, 3(2), 131-150.
Velluti, R. A. (1997). Interactions between sleep and sensory physiology. Journal of Sleep Research, 6(2), 61-77.
Vertes, R. P. (2004). Memory consolidation in sleep; dream or reality. Neuron, 44(1), 135-148.
Vertes, R. P., & Eastman, K. E. (2000). The case against memory consolidation in REM sleep. The Behavioral and Brain Sciences, 23(6), 867-876; discussion 904-1121.
Vertes, R. P., & Siegel, J. M. (2005). Time for the sleep community to take a critical look at the purported role of sleep in memory processing. Sleep, 28(10), 1228-1229; discussion 1230-1223.
Wagner, A. D., & Koutstaal, W. (2002). Priming. In V. S. Ramachandran (Ed.), Encyclopedia of the Human Brain, Four-Volume Set (Vol. 4, pp. 27-46). New York: Academic Press.
Walker, M. P. (2005). A refined model of sleep and the time course of memory formation. The Behavioral and Brain Sciences, 28(1), 51-64; discussion 64-104.
Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A., & Stickgold, R. (2002). Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron, 35(1), 205-211.
Walker, M. P., Liston, C., Hobson, J. A., & Stickgold, R. (2002). Cognitive flexibility across the sleep-wake cycle: REM-sleep enhancement of anagram problem solving. Brain Research. Cognitive Brain Research, 14(3), 317-324.
Walker, M. P., & Stickgold, R. (2006). Sleep, memory, and plasticity. Annual Review of Psychology, 57, 139-166.
Wamsley, E. J., Tucker, M., Payne, J. D., Benavides, J. A., & Stickgold, R. (2010). Dreaming of a learning task is associated with enhanced sleep-dependent memory consolidation. Current Biology 20(9), 850-855.
Yaroush, R., Sullivan, M. J., & Ekstrand, B. R. (1971). Effect of sleep on memory. II. Differential effect of the first and second half of the night. Journal of Experimental Psychology, 88(3), 361-366.
Young, M. P., & Rugg, M. D. (1992). Word frequency and multiple repetition as determinants of the modulation of event-related potentials in a semantic classification task. Psychophysiology, 29(6), 664-676.
Zola, S. M. (1998). Memory, amnesia, and the issue of recovered memory: neurobiological aspects. Clinical Psychology Review, 18(8), 915-932.
描述 碩士
國立政治大學
心理學研究所
95752002
99
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0957520021
資料類型 thesis
dc.contributor.advisor 楊建銘zh_TW
dc.contributor.advisor Yang, Chien Mingen_US
dc.contributor.author (Authors) 林俊成zh_TW
dc.contributor.author (Authors) Lin, Chun Chengen_US
dc.creator (作者) 林俊成zh_TW
dc.creator (作者) Lin, Chun Chengen_US
dc.date (日期) 2010en_US
dc.date.accessioned 3-Sep-2013 13:29:05 (UTC+8)-
dc.date.available 3-Sep-2013 13:29:05 (UTC+8)-
dc.date.issued (上傳時間) 3-Sep-2013 13:29:05 (UTC+8)-
dc.identifier (Other Identifiers) G0957520021en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/59710-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 心理學研究所zh_TW
dc.description (描述) 95752002zh_TW
dc.description (描述) 99zh_TW
dc.description.abstract (摘要) 睡眠是否能鞏固陳述性記憶目前尚無定論。過去研究一致較支持睡眠能增進相關字詞配對的學習,但睡眠是否能增進無關字詞配對的學習,目前仍存在不一致的發現。造成該差異的原因可能是:過去研究多採用的行為測量指標,或許無法充分反映出睡眠促進記憶新聯結(new association)產生的效果。事件關聯電位(Event-related potential, ERP)的N400反映出語意記憶系統內每個字詞彼此的相關程度,因此本研究使用N400來探討睡眠強化無關字詞配對形成新聯結的電生理歷程。30名健康受試者(15位男性與15位女性,平均年齡為20.7歲) 隨機分派至睡眠組或清醒組,第一晚在學習80組無關字詞配對後,接受第一次再認記憶測驗,同時進行ERP的記錄。隨後睡眠組接受睡眠記錄(PSG),清醒組則接受整晚的睡眠剝奪,兩組受試者皆在第二晚給予8小時的躺床時間,使他們有機會充足睡眠以恢復精神,於第三天早上接受第二次再認記憶測驗及ERP記錄。在記憶測驗時,無關字詞配對分別組成促發字(prime)與目標字(target)先後出現,受試者需判斷先後出現的字詞是否為先前學過的完整配對,在測試階段同時記錄腦電波訊號。行為測量結果顯示睡眠過後,再認表現的正確率顯著提高且反應時間明顯縮短,但在睡眠剝奪後則顯示相反的結果。電生理測量發現睡眠組的N400振幅在睡眠過後較清醒組明顯降低。另外,睡眠組較清醒組有較高的正確率與較短的反應時間。睡眠組再認測驗的進步量與慢波睡眠呈現負相關,而慢波睡眠與第一次再認測驗的正確率呈現正相關,根據二階段睡眠記憶鞏固理論,慢波睡眠涉及重新組織記憶的歷程(系統性固化),因此學習表現較佳的受試者出現較多的深度睡眠,可能反應其經歷系統性固化。本研究結果顯示睡眠對於產生新聯結有明顯的增強效果,而且慢波睡眠可能參與了記憶表徵重新分配的歷程。zh_TW
dc.description.abstract (摘要) The effect of sleep on declarative memory remains contradictory. Prior studies show that sleep benefits the learning of related word pairs consistently, while the learning of unrelated word pairs, however, show mixed results. It is possible that the behavioral measures used in previous studies are not sensitive enough to reveal subtle effects of sleep on new associations. N400, an event-related potential (ERP) component reflecting relatedness among words in semantic memory, was used in the present study to investigate the effect of sleep on the physiological process underlying new associations of unrelated word pairs. Participants were randomly assigned to either a Sleep group or a Wakefulness group. In the learning phase, participants were asked to memorize 80 visually presented unrelated word-pairs, followed by a pre-test phase with a recognition task. The participants then underwent either a night of nocturnal sleep (Sleep group) or sleep deprivation (Wakefulness group). A post-test was conducted after subjects had one night of recovery sleep. During both pre-test and post-test sessions, prime and target words were presented successively for the subjects to judge whether they were among the original pairs or new pairs. ERPs were recorded during both test phases. The behavioral data show that differences in improvement of recognition and decreases in reaction time from pre-test to post-test are significant between Sleep and Wakefulness groups. N400 peak amplitude attenuated significantly after sleep but not after wakefulness. The improvement of recognition negatively correlates with slow wave sleep (SWS). The number of word-pairs acquired in the learning phase, however, correlates positively with SWS. According to the two-stage memory consolidation theory of sleep, SWS involves in redistribution of memory (systematic consolidation). Therefore, that the participants with high performance showed more SWS may reflect the process of systematic consolidation. These results suggest that the sleep has an enhancing effect on the formation of novel association, and SWS may be involved in the process of redistributing memory representations.en_US
dc.description.tableofcontents ENGLISH ABSTRACT i
CHINESE ABSTRACT ii
ACKNOWLEDGMENTS iii
TABLE OF CONTENTS iv

CHAPTER ONE: GENERAL INTRODUCTION 1
1.STAGES OF SLEEP 1
2.CATEGORIES OF MEMORY 3
3.SLEEP AND NON-DECLARATIVE MEMORY 6
3.1 Effects of Total or Selective Sleep Deprivation on
Memory 7
3.2 Changes in Recorded Sleep Parameters After Learning 9
3.3 Reactivation for Memory Processing During Sleep 11
3.4 Facilitation of Memory With Cues During Sleep 12
3.5 Interim Summary 13
4.SLEEP AND DECLARATIVE MEMORY 14
4.1 Studies of Total or Selective Sleep Deprivation 14
4.2 Post-learning Modifications in Sleep Architecture 18
4.3 Reactivation for Memory Processing During Sleep 20
4.4 Influencing Memory Processing During Sleep by Cuing 21
4.5 Interim Summary 22
5.NETWORK OF HUMAN MEMORY SYSTEM 23
5.1 Representation of Memory Network 23
5.2 Priming Paradigm to Measure the Associations Between
Words 23
6.ERP STUDIES IN SLEEP-DEPENDENT MEMORY 25
6.1 Introduction to N400 of Event-related Potentials
(ERPs) 25
6.2 Factors That Affect N400 Amplitude 26
6.3 Theories and/or Mechanisms of the N400 27
6.4 ERP Research in Sleep and Declarative Memory 29

CHAPTER TWO: PRESENT STUDY 31

CHAPTER THREE: MATERIALS AND METHODS 32
1.MATERIALS AND METHODS 32
1.1 Subjects 32
1.2 Experimental Procedure 32
1.3 Paired-associates Learning List 33
1.4 Stimuli Presentation 34
2.ELECTROPHYSIOLOGICAL RECORDING 36
2.1 Polysomnograhy Recording 36
2.2 ERP Recording and Signal Extraction 36
3.STATISTICAL ANALYSIS 37
3.1 Behavioral Data 37
3.2 ERP Data 38
3.3 Correlations 38

CHAPTER FOUR: RESUTS 39
1.BEHAVIORAL DATA 39
1.1 Percentage of Correct Judgment(CJ%) 39
1.2 Reaction Time (RT) 39
2.ERP DATA 40
2.1 N1-P2 Components 40
2.2 N400 Peak Induced by OI Pairs at Fz, Cz and Pz Sites
41
2.3 N400 Latency Induced by OI Pairs at Fz, Cz and Pz
Sites 41
2.4 The Peak Amplitude of N400 Evoked by Different Pairs
Types at Cz site 42
2.5 The Peak Latency of N400 Induced by Different Word
Pairs at Cz site 43
3.CORRELATIONS BETWEEN SLEEP STAGES AND PARAMETERS OF
MEMORY MEASURES 44
4.SUBJECTIVE RATING: STANFORD SLEEPINESS SCALE 44

CHAPTER FIVE: DISCUSSION AND CONCLUSIONS 45

LIST OF TABLES

Table 1. The Role of Sleep on Unrelated Paired-associates Learning (Total and/or Partial Sleep Deprivation) 52
Table 2. The Role of Sleep on Related Paired-associates Learning (Total and/or Partial Sleep Deprivation) 53
Table3. Demographic and Subjective Variable 54
Table4. nPSG: Sleep Statistics of Sleep Group 55
Table5. Correlation Between Memory Measures and Distinct Sleep Stages 56

LIST OF FIGURES

Figure 1. The human sleep cycle 57
Figure 2. Memory systems 58
Figure 3. The Model of Semantic Memory and Purpose of Present Study. 59
Figure 4. The procedure of experiment. 60
Figure 5. The presentation of experiment stimuli 61
Figure 6 demonstrates the results of CJ% in each pair types between Groups. 62
Figure 7 demonstrates the results of RTs in each pair types between Groups. 63
Figure 8. Grand average ERP waveforms for three types of word pairs in Sleep group. 64
Figure 9. Grand average ERP waveforms for three types of word pairs in Wakefulness group. 65
Figure 10. Grand average ERP waveforms for OI pairs in Sleep group are compared with Wakefulness group. 66
Figure 11. Grand average ERP evoked by OI pairs. 67
Figure 12. The N400 induced by different word pairs at Cz site. 68

REFERENCES 69
SUPLEMENT 1 80
APPENDIX I: STANFORD SLEEPINESS SCALE 81
APPENDIX II: LISTS OF PAIRED-ASSOCIATES 82
zh_TW
dc.format.extent 1903527 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0957520021en_US
dc.subject (關鍵詞) 睡眠zh_TW
dc.subject (關鍵詞) 慢波睡眠zh_TW
dc.subject (關鍵詞) 睡眠剝奪zh_TW
dc.subject (關鍵詞) 學習zh_TW
dc.subject (關鍵詞) 記憶zh_TW
dc.subject (關鍵詞) 記憶固化zh_TW
dc.subject (關鍵詞) 陳述性記憶zh_TW
dc.subject (關鍵詞) 記憶再認zh_TW
dc.subject (關鍵詞) 配對學習zh_TW
dc.subject (關鍵詞) 新聯結zh_TW
dc.subject (關鍵詞) 事件關聯電位zh_TW
dc.subject (關鍵詞) N400zh_TW
dc.subject (關鍵詞) sleepen_US
dc.subject (關鍵詞) slow wave sleepen_US
dc.subject (關鍵詞) sleep deprivationen_US
dc.subject (關鍵詞) learningen_US
dc.subject (關鍵詞) memoryen_US
dc.subject (關鍵詞) consolidationen_US
dc.subject (關鍵詞) declarative memoryen_US
dc.subject (關鍵詞) new associationen_US
dc.subject (關鍵詞) recognition memoryen_US
dc.subject (關鍵詞) paired-associates learningen_US
dc.subject (關鍵詞) event-related potentialen_US
dc.subject (關鍵詞) ERPen_US
dc.subject (關鍵詞) N400en_US
dc.title (題名) 以事件關聯電位(ERP)探索睡眠對於配對學習的促進效果zh_TW
dc.title (題名) Event-related potential (ERP) evidence of sleep facilitating effect on paired-associates learningen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Agnew, H. W., Jr., Webb, W. B., & Williams, R. L. (1966). The first night effect: an EEG study of sleep. Psychophysiology, 2(3), 263-266.
Anderson, J. E., & Holcomb, P. J. (1995). Auditory and visual semantic priming using different stimulus onset asynchronies: an event-related brain potential study. Psychophysiology, 32(2), 177-190.
Ashcraft, M. H. (1994). Semantic Long-term memory. In M. H. Ashcraft (Ed.), Human Memory and Cognition (pp. 253-307). New York: Harpercollins College.
Aston-Jones, G., & Bloom, F. E. (1981). Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. Journal of Neuroscience, 1(8), 876-886.
Atienza, M., Cantero, J. L., & Dominguez-Marin, E. (2002). Mismatch negativity (MMN): an objective measure of sensory memory and long-lasting memories during sleep. International Journal of Psychophysiology, 46(3), 215-225.
Atienza, M., Cantero, J. L., & Stickgold, R. (2004). Posttraining sleep enhances automaticity in perceptual discrimination. Journal of Cognitive Neuroscience, 16(1), 53-64.
Aubrey, J., Smith, C., Tweed, S., & Nader, R. (1999). Cognitive and motor procedural tasks are dissociated in REM and Stage 2 sleep. Sleep Research Online, 2(Supplement 1), 220.
Backhaus, J., & Junghanns, K. (2006). Daytime naps improve procedural motor memory. Sleep Medicine, 7(6), 508-512.
Barrett, T. R., & Ekstrand, B. R. (1972). Effect of sleep on memory. 3. Controlling for time-of-day effects. Journal of Experimental Psychology, 96(2), 321-327.
Benson, K., & Feinberg, I. (1977). The beneficial effect of sleep in an extended Jenkins and Dallenbach paradigm. Psychophysiology, 14(4), 375-384.
Bentin, S., McCarthy, G., & Wood, C. C. (1985). Event-related potentials, lexical decision and semantic priming. Electroencephalography and Clinical Neurophysiology, 60(4), 343-355.
Besson, M., Kutas, M., & Van Petten, C. (1992). An event-related potential (ERP) analysis of semantic congruity and repetition effects in sentences. Journal of Cognitive Neuroscience, 4(2), 132-149.
Born, J. (2010). Slow-wave sleep and the consolidation of long-term memory. The World Journal of Biological Psychiatry 11 Suppl 1, 16-21.
Born, J., & Wilhelm, I. (2011). System consolidation of memory during sleep. Psychological Research. Advance online publication. doi: 10.1007/s00426-011-0335-6
Brualla, J., Romero, M. F., Serrano, M., & Valdizan, J. R. (1998). Auditory event-related potentials to semantic priming during sleep. Electroencephalography and Clinical Neurophysiology, 108(3), 283-290.
Buzsaki, G. (1989). Two-stage model of memory trace formation: a role for "noisy" brain states. Neuroscience, 31(3), 551-570.
Canas, J. J. (1990). Associative strength effects in the lexical decision task. Quarterly Journal of Experimental Psychology. A, Human Experimental psychology, 42(1), 121-145.
Castaldo, V., Krynicki, V., & Goldstein, J. (1974). Sleep stages and verbal memory. Perceptual and Motor Skills, 39, 1023-1030.
Chernik, D. A. (1972). Effect of REM sleep deprivation on learning and recall by humans. Perceptual and Motor Skills, 34(1), 283-294.
Chinese Knowledge and Information Processing Group (1993). The CKIP Categorical Classification of Mandarin Chinese (In Chinese). CKIP Technical Report no. 93-05.
Chwilla, D. J., Brown, C. M., & Hagoort, P. (1995). The N400 as a function of the level of processing. Psychophysiology, 32(3), 274-285.
Chwilla, D. J., & Kolk, H. H. (2005). Accessing world knowledge: evidence from N400 and reaction time priming. Brain Research. Cognitive Brain Research, 25(3), 589-606.
Clemens, Z., Fabo, D., & Halasz, P. (2005). Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience, 132(2), 529-535.
Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407-428.
De Koninck, J., Lorrain, D., Christ, G., Proulx, G., & Coulombe, D. (1989). Intensive language learning and increases in rapid eye movement sleep: evidence of a performance factor. International Journal of Psychophysiology, 8(1), 43-47.
Deacon, D., Dynowska, A., Ritter, W., & Grose-Fifer, J. (2004). Repetition and semantic priming of nonwords: implications for theories of N400 and word recognition. Psychophysiology, 41(1), 60-74.
Deacon, D., Hewitt, S., Yang, C., & Nagata, M. (2000). Event-related potential indices of semantic priming using masked and unmasked words: evidence that the N400 does not reflect a post-lexical process. Brain Research: Cognitive Brain Research, 9(2), 137-146.
Deacon, D., Uhm, T. J., Ritter, W., Hewitt, S., & Dynowska, A. (1999). The lifetime of automatic semantic priming effects may exceed two seconds. Brain Research. Cognitive Brain Research, 7(4), 465-472.
Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews. Neuroscience.
Diekelmann, S., Wilhelm, I., & Born, J. (2009). The whats and whens of sleep-dependent memory consolidation. Sleep Medicine Reviews, 13(5), 309-321.
Doyon, J., Penhune, V., & Ungerleider, L. G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41(3), 252-262.
Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nature Reviews. Neuroscience, 1(1), 41-50.
Ekstrand, B. R., Sullivan, M. J., Parker, D. F., & West, J. N. (1971). Spontaneous recovery and sleep. Journal of Experimental Psychology, 88(1), 142-144.
Ellenbogen, J. M., Hulbert, J. C., Stickgold, R., Dinges, D. F., & Thompson-Schill, S. L. (2006). Interfering with theories of sleep and memory: sleep, declarative memory, and associative interference. Current Biology, 16(13), 1290-1294.
Ellenbogen, J. M., Payne, J. D., & Stickgold, R. (2006). The role of sleep in declarative memory consolidation: passive, permissive, active or none? Current Opinion in Neurobiology, 16(6), 716-722.
Empson, J. A., & Clarke, P. R. (1970). Rapid eye movements and remembering. Nature, 227(5255), 287-288.
Ficca, G., Lombardo, P., Rossi, L., & Salzarulo, P. (2000). Morning recall of verbal material depends on prior sleep organization. Behavioural Brain Research, 112(1-2), 159-163.
Ficca, G., & Salzarulo, P. (2004). What in sleep is for memory. Sleep Medicine, 5(3), 225-230.
Fischer, S., Hallschmid, M., Elsner, A. L., & Born, J. (2002). Sleep forms memory for finger skills. Proceedings of the National Academy of Sciences of the United States of America, 99(18), 11987-11991.
Fogel, S. M., & Smith, C. T. (2006). Learning-dependent changes in sleep spindles and Stage 2 sleep. Journal of Sleep Research, 15(3), 250-255.
Fowler, M. J., Sullivan, M. J., & Ekstrand, B. R. (1973). Sleep and memory. Science, 179(70), 302-304.
Franklin, M. S., Dien, J., Neely, J. H., Huber, E., & Waterson, L. D. (2007). Semantic priming modulates the N400, N300, and N400RP. Clinical Neurophysiology, 118(5), 1053-1068.
Friederici, A. D. (1997). Neurophysiological aspects of language processing. Clinical Neuroscience, 4(2), 64-72.
Gais, S., Albouy, G., Boly, M., Dang-Vu, T. T., Darsaud, A., Desseilles, M., et al. (2007). Sleep transforms the cerebral trace of declarative memories. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18778-18783.
Gais, S., & Born, J. (2004). Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation. Proceedings of the National Academy of Sciences of the United States of America, 101(7), 2140-2144.
Gais, S., Lucas, B., & Born, J. (2006). Sleep after learning aids memory recall. Learning & Memory, 13(3), 259-262.
Gais, S., Molle, M., Helms, K., & Born, J. (2002). Learning-dependent increases in sleep spindle density. Journal of Neuroscience, 22(15), 6830-6834.
Gais, S., Plihal, W., Wagner, U., & Born, J. (2000). Early sleep triggers memory for early visual discrimination skills. Nature Neuroscience, 3(12), 1335-1339.
Gold, B. T., Balota, D. A., Jones, S. J., Powell, D. K., Smith, C. D., & Andersen, A. H. (2006). Dissociation of automatic and strategic lexical-semantics: functional magnetic resonance imaging evidence for differing roles of multiple frontotemporal regions. The Journal of Neuroscience, 26(24), 6523-6532.
Goshen-Gottstein, Y., & Moscovitch, M. (1995a). Repetition priming effects for newly formed associations are perceptually based: evidence from shallow encoding and format specificity. Journal of Experimental Psychology: Learning, Memory and Cognition 21(5), 1249-1262.
Goshen-Gottstein, Y., & Moscovitch, M. (1995b). Repetition priming for newly formed and preexisting associations: perceptual and conceptual influences. Journal of Experimental Psychology: Learning, Memory and Cognition 21(5), 1229-1248.
Graf, P., & Schacter, D. L. (1985). Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of Experimental Psychology: Learning, Memory and Cognition 11(3), 501-518.
Grosvenor, A., & Lack, L. C. (1984). The effect of sleep before or after learning on memory. Sleep, 7(2), 155-167.
Haider, M., Spong, P., & Lindsley, D. B. (1964). Attention, vigilance, and cortical evoked-potentials in humans. Science, 145, 180-182.
Hebb, D. O. (1949). The orgnizaion of behavior. New York: John Wiley and Sons.


Hill, H., Ott, F., & Weisbrod, M. (2005). SOA-dependent N400 and P300 semantic priming effects using pseudoword primes and a delayed lexical decision. International Journal of Psychophysiology, 56(3), 209-221.
Hill, H., Strube, M., Roesch-Ely, D., & Weisbrod, M. (2002). Automatic vs. controlled processes in semantic priming--differentiation by event-related potentials. International Journal of Psychophysiology, 44(3), 197-218.
Hobson, J. A., McCarley, R. W., & Wyzinski, P. W. (1975). Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science, 189(4196), 55-58.
Holcomb, P. J. (1988). Automatic and attentional processing: an event-related brain potential analysis of semantic priming. Brain and Language, 35(1), 66-85.
Holcomb, P. J., & Neville, H. J. (1990). Auditory and visual semantic priming in lexical decision: A comparison using event-related brain potentials. Language and Cognitive Processes, 5(4), 281-312.
Jenkins, J. G., & Dallenbach, K. M. (1924). Obliviscence during sleep and waking The American Journal of Psychology, 35(4), 605-612.
Kametani, H., & Kawamura, H. (1990). Alterations in acetylcholine release in the rat hippocampus during sleep-wakefulness detected by intracerebral dialysis. Life Sciences, 47(5), 421-426.
Karni, A., Tanne, D., Rubenstein, B. S., Askenasy, J. J., & Sagi, D. (1994). Dependence on REM sleep of overnight improvement of a perceptual skill. Science, 265(5172), 679-682.
Kounios, J., & Holcomb, P. J. (1992). Structure and process in semantic memory: evidence from event-related brain potentials and reaction times. Journal of Experimental Psychology: General 121(4), 459-479.
Kuperberg, G. R., Lakshmanan, B. M., Greve, D. N., & West, W. C. (2008). Task and semantic relationship influence both the polarity and localization of hemodynamic modulation during lexico-semantic processing. Human Brain Mapping, 29(5), 544-561.
Kuriyama, K., Stickgold, R., & Walker, M. P. (2004). Sleep-dependent learning and motor-skill complexity. Learning & Memory, 11(6), 705-713.
Kutas, M., & Federmeier, K. D. (2000). Electrophysiology reveals semantic memory use in language comprehension. Trends in Cognitive Sciences, 4(12), 463-470.
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621-647.
Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: brain potentials reflect semantic incongruity. Science, 207(4427), 203-205.
Kutas, M., & Iragui, V. (1998). The N400 in a semantic categorization task across 6 decades. Electroencephalography and Clinical Neurophysiology, 108(5), 456-471.
Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: (de)constructing the N400. Nature Reviews. Neuroscience, 9(12), 920-933.
Lewin, I., & Glaubman, H. (1975). The effect of REM deprivation: is it detrimental, beneficial, or neutral? Psychophysiology, 12(3), 349-353.
Lin, C. C., & Yang, C. M. (2010). Event-related potential indices of new word association following intensive learning of unrelated word-pairs. Poster presented at the 49th Annual Meeting of the Taiwanese Psychological Association.
Lund, H. G., Reider, B. D., Whiting, A. B., & Prichard, J. R. (2010). Sleep patterns and predictors of disturbed sleep in a large population of college students. Journal of Adolescent Health, 46(2), 124-132.
Lydic, R., & Baghdoyan, H. A. (1998). Handbook of Behavioral State Control: Cellular and Molecular Mechanisms: Boca Raton, FL: CRC Press.
Maquet, P. (2001). The role of sleep in learning and memory. Science, 294(5544), 1048-1052.
Maquet, P., Laureys, S., Peigneux, P., Fuchs, S., Petiau, C., Phillips, C., et al. (2000). Experience-dependent changes in cerebral activation during human REM sleep. Nature Neuroscience, 3(8), 831-836.
Maquet, P., Schwartz, S., Passingham, R., & Frith, C. (2003). Sleep-related consolidation of a visuomotor skill: brain mechanisms as assessed by functional magnetic resonance imaging. Journal of Neuroscience, 23(4), 1432-1440.
Marrosu, F., Portas, C., Mascia, M. S., Casu, M. A., Fa, M., Giagheddu, M., et al. (1995). Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats. Brain Research, 671(2), 329-332.
Marshall, L., & Born, J. (2007). The contribution of sleep to hippocampus-dependent memory consolidation. Trends in Cognitive Sciences, 11(10), 442-450.
Mazzoni, G., Gori, S., Formicola, G., Gneri, C., Massetani, R., Murri, L., et al. (1999). Word recall correlates with sleep cycles in elderly subjects. Journal of Sleep Research, 8(3), 185-188.
McKone, E., & Slee, J. A. (1997). Explicit contamination in "implicit" memory for new associations. Memory & cognition, 25(3), 352-366.
Meienberg, P. (1977). The tonic aspects of human REM sleep during long-term intensive verbal learning. Physiological Psychology, 5, 250-256.
Mograss, M., Godbout, R., & Guillem, F. (2006). The ERP old-new effect: A useful indicator in studying the effects of sleep on memory retrieval processes. Sleep, 29(11), 1491-1500.
Mograss, M., Guillem, F., Brazzini-Poisson, V., & Godbout, R. (2009). The effects of total sleep deprivation on recognition memory processes: a study of event-related potential. Neurobiology of Learning and Memory, 91(4), 343-352.
Mograss, M., Guillem, F., & Godbout, R. (2008). Event-related potentials differentiates the processes involved in the effects of sleep on recognition memory. Psychophysiology.
Näätänen, R., Gaillard, A., & Mäntysalo, S. (1978). The N1 effect of selective attention reinterpreted. Acta Psychologica, 42, 312-329.
Neely, J. H. (1991). Semantic priming effects in visual word recognition: a selective review of current findings and theories. In D. Besner, Humphreys, G.W. (Ed.), Basic progresses in reading—visual word recognition (pp. 264-333). NJ: Erlbaum, Hillsdale.
Nunez-Pena, M. I., & Honrubia-Serrano, M. L. (2005). N400 and category exemplar associative strength. International Journal of Psychophysiology, 56(1), 45-54.
Pace-Schott, E. F., & Hobson, J. A. (2002). The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nature Reviews. Neuroscience, 3(8), 591-605.
Peigneux, P., Laureys, S., Delbeuck, X., & Maquet, P. (2001). Sleeping brain, learning brain. The role of sleep for memory systems. Neuroreport, 12(18), A111-124.
Peigneux, P., Laureys, S., Fuchs, S., Collette, F., Perrin, F., Reggers, J., et al. (2004). Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron, 44(3), 535-545.
Peters, K. R., Smith, V., & Smith, C. T. (2007). Changes in sleep architecture following motor learning depend on initial skill level. Journal of Cognitive Neuroscience, 19(5), 817-829.
Plihal, W., & Born, J. (1997). Effects of early and late nocturnal sleep on declarative and procedural memory. Journal of Cognitive Neuroscience, 9, 534-547.
Plihal, W., & Born, J. (1999). Effects of early and late nocturnal sleep on priming and spatial memory. Psychophysiology, 36(5), 571-582.
Rasch, B., & Born, J. (2007). Maintaining memories by reactivation. Current Opinion in Neurobiology, 17(6), 698-703.
Rasch, B., Buchel, C., Gais, S., & Born, J. (2007). Odor cues during slow-wave sleep prompt declarative memory consolidation. Science, 315(5817), 1426-1429.
Rauchs, G., Desgranges, B., Foret, J., & Eustache, F. (2005). The relationships between memory systems and sleep stages. Journal of Sleep Research, 14(2), 123-140.
Rechtschaffen, A., & Kales, A. (1968). A manual of standardized terminology, techniques and scoring systems for sleep stages of human subjects: Los Angeles: Brain Information Service/Brain Research Institute.
Rhodes, S. M., & Donaldson, D. I. (2008). Association and not semantic relationships elicit the N400 effect: electrophysiological evidence from an explicit language comprehension task. Psychophysiology, 45(1), 50-59.
Roehm, D., Bornkessel-Schlesewsky, I., Rosler, F., & Schlesewsky, M. (2007). To predict or not to predict: influences of task and strategy on the processing of semantic relations. Journal of Cognitive Neuroscience, 19(8), 1259-1274.
Rossell, S. L., Price, C. J., & Nobre, A. C. (2003). The anatomy and time course of semantic priming investigated by fMRI and ERPs. Neuropsychologia, 41(5), 550-564.
Rudoy, J. D., Voss, J. L., Westerberg, C. E., & Paller, K. A. (2009). Strengthening individual memories by reactivating them during sleep. Science, 326(5956), 1079.
Rugg, M. D. (1985). The effects of semantic priming and work repetition on event-related potentials. Psychophysiology, 22(6), 642-647.
Rugg, M. D. (1990). Event-related brain potentials dissociate repetition effects of high- and low-frequency words. Memory & Cognition, 18(4), 367-379.
Rugg, M. D., & Doyle, M. C. (1994). Event-related potentials and stimulus repetition in indirect and direct. In H. Heinze, T. Munte & G. R. Mangun (Eds.), Cognitive Electrophysiology (pp. 124-148). Boston: Birkhauser.
Schacter, D. L., & Buckner, R. L. (1998). Priming and the brain. Neuron, 20(2), 185-195.
Schmidt, C., Peigneux, P., Muto, V., Schenkel, M., Knoblauch, V., Munch, M., et al. (2006). Encoding difficulty promotes postlearning changes in sleep spindle activity during napping. Journal of Neuroscience, 26(35), 8976-8982.
Sejnowski, T. J., & Destexhe, A. (2000). Why do we sleep? Brain Research, 886(1-2), 208-223.
Shima, K., Nakahama, H., & Yamamoto, M. (1986). Firing properties of two types of nucleus raphe dorsalis neurons during the sleep-waking cycle and their responses to sensory stimuli. Brain Research, 399(2), 317-326.
Smith, C. (1995). Sleep states and memory processes. Behavioural Brain Research, 69(1-2), 137-145.
Smith, C. (2001). Sleep states and memory processes in humans: procedural versus declarative memory systems. Sleep Medicine Reviews, 5(6), 491-506.
Smith, C., & Lapp, L. (1991). Increases in number of REMS and REM density in humans following an intensive learning period. Sleep, 14(4), 325-330.
Smith, C., & MacNeill, C. (1994). Impaired motor memory for a pursuit rotor task following Stage 2 sleep loss in college students. Journal of Sleep Research, 3(4), 206-213.
Smith, C., & Weeden, K. (1990). Post training REMs coincident auditory stimulation enhances memory in humans. Psychiatric Journal of the University of Ottawa, 15(2), 85-90.
Smith, C. T., Nixon, M. R., & Nader, R. S. (2004). Posttraining increases in REM sleep intensity implicate REM sleep in memory processing and provide a biological marker of learning potential. Learning & Memory, 11(6), 714-719.
Squire, L. R. (1986). Mechanisms of memory. Science, 232(4758), 1612-1619.
Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13515-13522.
Stickgold, R. (1998). Sleep: off-line memory reprocessing. Trends in Cognitive Science, 2(12), 484-492.
Stickgold, R. (2004). Dissecting sleep-dependent learning and memory consolidation. Comment on Schabus M et al. Sleep spindles and their significance for declarative memory consolidation. Sleep 2004;27(8):1479-85. Sleep, 27(8), 1443-1445.
Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature, 437(7063), 1272-1278.
Stickgold, R., James, L., & Hobson, J. A. (2000). Visual discrimination learning requires sleep after training. Nature Neuroscience, 3(12), 1237-1238.
Stickgold, R., Scott, L., Rittenhouse, C., & Hobson, J. A. (1999). Sleep-induced changes in associative memory. Journal of Cognitive Neuroscience, 11(2), 182-193.
Stickgold, R., Whidbee, D., Schirmer, B., Patel, V., & Hobson, J. A. (2000). Visual discrimination task improvement: A multi-step process occurring during sleep. Journal of Cognitive Neuroscience, 12(2), 246-254.
Su, J.Y. (2010). Study of Promotion of Procedural Memory Consolidation by Auditory Stimulus during Sleep (Unpublished Master`s Thesis). National Cheng Kung University, Tainan,Taiwan.
Talamini, L. M., Nieuwenhuis, I. L., Takashima, A., & Jensen, O. (2008). Sleep directly following learning benefits consolidation of spatial associative memory. Learning & Memory, 15(4), 233-237.
Tamminen, J., Payne, J. D., Stickgold, R., Wamsley, E. J., & Gaskell, M. G. (2010). Sleep spindle activity is associated with the integration of new memories and existing knowledge. The Journal of Neuroscience, 30(43), 14356-14360.
Tilley, A. J., & Empson, J. A. (1978). REM sleep and memory consolidation. Biological Psychology, 6(4), 293-300.
Tucker, M. A., Hirota, Y., Wamsley, E. J., Lau, H., Chaklader, A., & Fishbein, W. (2006). A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory. Neurobiology of Learning and Memory, 86(2), 241-247.
Tulving, E. (1972). Episodic and semantic memory: New York: Academic Press.
Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. Science, 247(4940), 301-306.
Van Petten, C., Kutas, M., Kluender, R., Mitchiner, M., & Mclsaac, H. (1991). Fractionating the word repetition effect with event-related potentials. Journal of Cognitive Neuroscience, 3(2), 131-150.
Velluti, R. A. (1997). Interactions between sleep and sensory physiology. Journal of Sleep Research, 6(2), 61-77.
Vertes, R. P. (2004). Memory consolidation in sleep; dream or reality. Neuron, 44(1), 135-148.
Vertes, R. P., & Eastman, K. E. (2000). The case against memory consolidation in REM sleep. The Behavioral and Brain Sciences, 23(6), 867-876; discussion 904-1121.
Vertes, R. P., & Siegel, J. M. (2005). Time for the sleep community to take a critical look at the purported role of sleep in memory processing. Sleep, 28(10), 1228-1229; discussion 1230-1223.
Wagner, A. D., & Koutstaal, W. (2002). Priming. In V. S. Ramachandran (Ed.), Encyclopedia of the Human Brain, Four-Volume Set (Vol. 4, pp. 27-46). New York: Academic Press.
Walker, M. P. (2005). A refined model of sleep and the time course of memory formation. The Behavioral and Brain Sciences, 28(1), 51-64; discussion 64-104.
Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A., & Stickgold, R. (2002). Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron, 35(1), 205-211.
Walker, M. P., Liston, C., Hobson, J. A., & Stickgold, R. (2002). Cognitive flexibility across the sleep-wake cycle: REM-sleep enhancement of anagram problem solving. Brain Research. Cognitive Brain Research, 14(3), 317-324.
Walker, M. P., & Stickgold, R. (2006). Sleep, memory, and plasticity. Annual Review of Psychology, 57, 139-166.
Wamsley, E. J., Tucker, M., Payne, J. D., Benavides, J. A., & Stickgold, R. (2010). Dreaming of a learning task is associated with enhanced sleep-dependent memory consolidation. Current Biology 20(9), 850-855.
Yaroush, R., Sullivan, M. J., & Ekstrand, B. R. (1971). Effect of sleep on memory. II. Differential effect of the first and second half of the night. Journal of Experimental Psychology, 88(3), 361-366.
Young, M. P., & Rugg, M. D. (1992). Word frequency and multiple repetition as determinants of the modulation of event-related potentials in a semantic classification task. Psychophysiology, 29(6), 664-676.
Zola, S. M. (1998). Memory, amnesia, and the issue of recovered memory: neurobiological aspects. Clinical Psychology Review, 18(8), 915-932.
zh_TW