Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 IEEE802.16j中具干擾感知之訊框排程的研究
Interference-aware frame scheduling for IEEE 802.16j network
作者 陳韋良
貢獻者 張宏慶
陳韋良
關鍵詞 中繼
干擾
排程
relay
interference
scheduling
日期 2010
上傳時間 4-Sep-2013 17:06:42 (UTC+8)
摘要 IEEE 802.16標準中,有所謂Multi-hop Relay (MR)的概念,其中存在很多問題需要解決,所以在IEEE 802.16j標準中提出中繼傳輸站(Relay Station,RS)來延伸原來的涵蓋範圍及解決遮蔽效應造成訊號衰弱的問題。但在MR中由於多了中繼傳輸站來傳遞資料,網路拓樸變得相對複雜,資料從發送端到接收端的路徑變長了,在資料大量傳輸的狀況下,會因干擾及壅塞的問題變得嚴重而導致整個網路效能低落。本研究提出一套具干擾感知的排程方法,可有效提升網路效能。本方法分為三個部分,首先在允入控制階段盡可能選取高調變的連線,其次利用空間距離的分群概念提出TZG (Time Zone Grouping)方法,以逆時針的方式區分不同RS傳輸的時區,最後以調整分區內non-real time服務的頻寬需求,減少RS在access zone頻寬的浪費。我們利用NS2進行模擬實驗分析,驗證所提出的方法在利用分區傳送避免碰撞下,UGS的delay time相較於未分群的方法可有效改善約33%,ertPS可改善約29%,rtPS可改善約20%,而系統throughout相較於其他僅選擇最大access link的頻寬需求作為access zone大小的方法最多可提升約15.5%的效能。
As we know, there is Multi-hop Relay concept in standard of IEEE 802.16. But there are still many problems unsolved in WiMAX, so IEEE 802.16j propose a new station type, relay station, to extend signal coverage and improve the signal intensity which affected by shadow fading. Since there are many relay stations in the coverage of base station, data transmission and path routing become more complexity. At the same time, the transmissions become close, more interference and network congestion will decrease the efficiency of data transmission in the network.
This research proposes a frame scheduling with interference aware, which consist of three parts. First, we make the better modulation of links get higher priority; Second, we use concept of distance to proposed Time Zone grouping (TZG), which set RS into different group in counterclockwise way to reduce interference; Third, adjusting bandwidth allocation in access zone to decrease bandwidth waste in access zone. We implement our algorithm in NS2 simulator, the result shows that our method can improve delay of UGS about 33%, ertPS about 20%, rtPS about 20% than RTDS(Real time Distributed Scheduling ), and the system throughput can grow about 15.5% than the mechanism that just choose maximum requirement in access link of all BS/RS as access zone.
參考文獻 [1] “IEEE Standard for Local and Metropolitan Area Networks, Part 16:Air Interface for Fixed Broadband Wireless Access Systems,” IEEE Std 802.16-2004, Oct. 2004.
[2] “IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands,” IEEE 802.16e-2005, Feb. 2006.
[3] “IEEE Standard for Local and Metropolitan Area Networks, Part 16:Air Interface for Broadband Wireless Access Systems Amendment 1: Multiple Relay Specification,” IEEE 802.16j-2009, June 2009.
[4] V. Genc, S. Murphy, Y. Yu, and J. Murphy, “IEEE 802.16j Relay-Based Wireless Access Networks: An Overview,” in Wireless Communications 2008, IEEE, vol. 15, Issue 5, pp.56-63.
[5] S.W. Peter and R.W. Heath, “The Future of WiMAX: Multihop Relaying with IEEE 802.16j,” Communications Magazine 2009, IEEE, vol. 47, Issue 1.
[6] D. Ghosh, A. Gupta, and P. Mohapatra, “Adaptive Scheduling of Prioritized Traffic in IEEE 802.16j Wireless Networks,” Wireless and Mobile Computing, Networking and Communications 2009, IEEE, pp. 307-313.
[7] D. Ghosh, A. Gupta, and P. Mohapatra, “Admission Control and Interference-Aware Scheduling in Multi-hop WiMAX Networks,” Mobile Ad-hoc and Sensor System 2007, pp. 1-9.
[8] C. Nie, T. Korakis, an”A Multi-hop Polling Service with Bandwidth Request Aggregation in IEEE 802.16j Networks,” Vehicular Technology Conference 2008, IEEE, pp.2172-2176.
[9] Y. Wang, K. Huang, and W. Huang, “An Adaptive Distributed Scheduling Scheme for IEEE 802.16j Networks,” International Wireless Communications and Mobile Computing Conference ACM proceeding 2010.
[10] H. Baek and J. W. Jang, “Dynamic Frame Scheduling with Load Balancing for IEEE 802.16j,” Wireless Communication and Signal Processing, pp. 1-5.
[11] G. Narlikar, G.Wilfong, and L. Zang, “Designing Multihop Wireless Backhaul Networks with Delay Guarantees,” International Conference on Computer Communications Infocom 2006 , IEEE, pp. 1-12.
[12] C. Hsieh, J. Chen, and J. Weng, ”Cooperative Adaptive Partner Selection for Real-Time Services in IEEE 802.16j Multihop Relay Networks, ”Wireless Communications and Networking Conference 2010, IEEE, pp. 1-6.
[13] A. F. Bayan and T. Wan, “A Scalable QoS Scheduling Architecture for WiMAX Multi-Hop Relay Networks,” Education Technology and Computer International Conference 2010 2nd, vol. 5, pp. 326-331.
[14] K. Chu and T. Huang, “A Novel Bandwidth Request Mechanism for IEEE 802.16j Networks” Tamkang Journal of Science and Engineering 2010, vol. 13, No. 1, pp. 71-78.
[15] Y. Lai and Y. Chen, ”Designing and Implementing an IEEE 802.16 Network Simulator for Performance Evaluation of Bandwidth Allocation Algorithm,” High Performance Computing and Communications 2009, IEEE, pp. 432-437.
描述 碩士
國立政治大學
資訊科學學系
97753030
99
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0097753030
資料類型 thesis
dc.contributor.advisor 張宏慶zh_TW
dc.contributor.author (Authors) 陳韋良zh_TW
dc.creator (作者) 陳韋良zh_TW
dc.date (日期) 2010en_US
dc.date.accessioned 4-Sep-2013 17:06:42 (UTC+8)-
dc.date.available 4-Sep-2013 17:06:42 (UTC+8)-
dc.date.issued (上傳時間) 4-Sep-2013 17:06:42 (UTC+8)-
dc.identifier (Other Identifiers) G0097753030en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/60243-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 97753030zh_TW
dc.description (描述) 99zh_TW
dc.description.abstract (摘要) IEEE 802.16標準中,有所謂Multi-hop Relay (MR)的概念,其中存在很多問題需要解決,所以在IEEE 802.16j標準中提出中繼傳輸站(Relay Station,RS)來延伸原來的涵蓋範圍及解決遮蔽效應造成訊號衰弱的問題。但在MR中由於多了中繼傳輸站來傳遞資料,網路拓樸變得相對複雜,資料從發送端到接收端的路徑變長了,在資料大量傳輸的狀況下,會因干擾及壅塞的問題變得嚴重而導致整個網路效能低落。本研究提出一套具干擾感知的排程方法,可有效提升網路效能。本方法分為三個部分,首先在允入控制階段盡可能選取高調變的連線,其次利用空間距離的分群概念提出TZG (Time Zone Grouping)方法,以逆時針的方式區分不同RS傳輸的時區,最後以調整分區內non-real time服務的頻寬需求,減少RS在access zone頻寬的浪費。我們利用NS2進行模擬實驗分析,驗證所提出的方法在利用分區傳送避免碰撞下,UGS的delay time相較於未分群的方法可有效改善約33%,ertPS可改善約29%,rtPS可改善約20%,而系統throughout相較於其他僅選擇最大access link的頻寬需求作為access zone大小的方法最多可提升約15.5%的效能。zh_TW
dc.description.abstract (摘要) As we know, there is Multi-hop Relay concept in standard of IEEE 802.16. But there are still many problems unsolved in WiMAX, so IEEE 802.16j propose a new station type, relay station, to extend signal coverage and improve the signal intensity which affected by shadow fading. Since there are many relay stations in the coverage of base station, data transmission and path routing become more complexity. At the same time, the transmissions become close, more interference and network congestion will decrease the efficiency of data transmission in the network.
This research proposes a frame scheduling with interference aware, which consist of three parts. First, we make the better modulation of links get higher priority; Second, we use concept of distance to proposed Time Zone grouping (TZG), which set RS into different group in counterclockwise way to reduce interference; Third, adjusting bandwidth allocation in access zone to decrease bandwidth waste in access zone. We implement our algorithm in NS2 simulator, the result shows that our method can improve delay of UGS about 33%, ertPS about 20%, rtPS about 20% than RTDS(Real time Distributed Scheduling ), and the system throughput can grow about 15.5% than the mechanism that just choose maximum requirement in access link of all BS/RS as access zone.
en_US
dc.description.tableofcontents 1. 第一章 緒論 1
1.1 WiMAX簡介 1
1.2 IEEE 802.16j Multi-hop Relay 2
1.2.1 IEEE 802.16j Relay Mode 3
1.2.2 IEEE 802.16j Frame Structure 4
1.3 研究動機與目的 6
1.4 論文組織架構 7
2. 第二章 相關研究 8
2.1 Frame Scheduling 8
2.2 Interference 13
2.3 Quality of Service 15
2.4 Related Work 18
3. 第三章 方法論 22
3.1 問題分析 22
3.1.1. 通道品質不佳的連線允入控制 22
3.1.2. 動態配置的access zone 仍存在頻寬浪費 23
3.1.3. 所有允入連線的傳送優先順序 24
3.1.4. MR環境中的傳輸干擾 24
3.1.5. MR值中維持QoS的保證 25
3.2 研究方法 26
3.2.1 允入控制中連線請求的限制 26
3.2.2 動態調整non-real time頻寬需求以降低各基地台頻寬使用差距 28
3.2.3 傳輸時的干擾感知 30
3.3 系統架構與流程 33
4. 第四章 模擬實驗與數據分析 37
4.1 實驗環境參數 37
4.2 模擬數據 38
5. 第五章 結論與未來研究 53
5.1 結論 53
5.2 未來研究 54
zh_TW
dc.format.extent 5616609 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0097753030en_US
dc.subject (關鍵詞) 中繼zh_TW
dc.subject (關鍵詞) 干擾zh_TW
dc.subject (關鍵詞) 排程zh_TW
dc.subject (關鍵詞) relayen_US
dc.subject (關鍵詞) interferenceen_US
dc.subject (關鍵詞) schedulingen_US
dc.title (題名) IEEE802.16j中具干擾感知之訊框排程的研究zh_TW
dc.title (題名) Interference-aware frame scheduling for IEEE 802.16j networken_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] “IEEE Standard for Local and Metropolitan Area Networks, Part 16:Air Interface for Fixed Broadband Wireless Access Systems,” IEEE Std 802.16-2004, Oct. 2004.
[2] “IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands,” IEEE 802.16e-2005, Feb. 2006.
[3] “IEEE Standard for Local and Metropolitan Area Networks, Part 16:Air Interface for Broadband Wireless Access Systems Amendment 1: Multiple Relay Specification,” IEEE 802.16j-2009, June 2009.
[4] V. Genc, S. Murphy, Y. Yu, and J. Murphy, “IEEE 802.16j Relay-Based Wireless Access Networks: An Overview,” in Wireless Communications 2008, IEEE, vol. 15, Issue 5, pp.56-63.
[5] S.W. Peter and R.W. Heath, “The Future of WiMAX: Multihop Relaying with IEEE 802.16j,” Communications Magazine 2009, IEEE, vol. 47, Issue 1.
[6] D. Ghosh, A. Gupta, and P. Mohapatra, “Adaptive Scheduling of Prioritized Traffic in IEEE 802.16j Wireless Networks,” Wireless and Mobile Computing, Networking and Communications 2009, IEEE, pp. 307-313.
[7] D. Ghosh, A. Gupta, and P. Mohapatra, “Admission Control and Interference-Aware Scheduling in Multi-hop WiMAX Networks,” Mobile Ad-hoc and Sensor System 2007, pp. 1-9.
[8] C. Nie, T. Korakis, an”A Multi-hop Polling Service with Bandwidth Request Aggregation in IEEE 802.16j Networks,” Vehicular Technology Conference 2008, IEEE, pp.2172-2176.
[9] Y. Wang, K. Huang, and W. Huang, “An Adaptive Distributed Scheduling Scheme for IEEE 802.16j Networks,” International Wireless Communications and Mobile Computing Conference ACM proceeding 2010.
[10] H. Baek and J. W. Jang, “Dynamic Frame Scheduling with Load Balancing for IEEE 802.16j,” Wireless Communication and Signal Processing, pp. 1-5.
[11] G. Narlikar, G.Wilfong, and L. Zang, “Designing Multihop Wireless Backhaul Networks with Delay Guarantees,” International Conference on Computer Communications Infocom 2006 , IEEE, pp. 1-12.
[12] C. Hsieh, J. Chen, and J. Weng, ”Cooperative Adaptive Partner Selection for Real-Time Services in IEEE 802.16j Multihop Relay Networks, ”Wireless Communications and Networking Conference 2010, IEEE, pp. 1-6.
[13] A. F. Bayan and T. Wan, “A Scalable QoS Scheduling Architecture for WiMAX Multi-Hop Relay Networks,” Education Technology and Computer International Conference 2010 2nd, vol. 5, pp. 326-331.
[14] K. Chu and T. Huang, “A Novel Bandwidth Request Mechanism for IEEE 802.16j Networks” Tamkang Journal of Science and Engineering 2010, vol. 13, No. 1, pp. 71-78.
[15] Y. Lai and Y. Chen, ”Designing and Implementing an IEEE 802.16 Network Simulator for Performance Evaluation of Bandwidth Allocation Algorithm,” High Performance Computing and Communications 2009, IEEE, pp. 432-437.
zh_TW