Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 信用違約機率的聯合校準檢定
Joint Calibration Test of Credit Rating Probabilities of Default
作者 郭書廷
Kuo,Shu Ting
貢獻者 劉惠美<br>陳麗霞
Liu,Huimei<br>Chen,Li Shya
郭書廷
Kuo,Shu Ting
關鍵詞 違約機率校準檢定
交聯集檢定
齊一較強檢力檢定
calibration test
intersection union test
uniformly more powerful test
日期 2009
上傳時間 5-Sep-2013 15:09:46 (UTC+8)
摘要 違約機率校準檢定 - global test 由兩部分組成:第一部分為 level,探討真實的平均違約機率是否被高估;第二部分 shape,探討高低違約機率的表現情形。但 global test 與相關違約事件下的 level test 檢定尺度皆遠高於顯著水準 $\\alpha$。本文先是針對相關違約事件,利用截斷分配使 level test 犯型一誤差機率更接近顯著水準,並提出虛無假設及對立假設為 $H_0: \\theta \\in \\cup_{i=1}^2 \\Theta_{i0}$ vs. $H_1: \\theta \\in \\cap_{i=1}^2 \\Theta_{i1}$ 的形式,引用交聯集檢定。更進一步透過 Liu \\& Berger (1995, \\textit{The Annals of Statistics}, 23, 1, 55-72) 建構齊一較強檢力檢定,改善檢定力。模擬結果顯示交聯集檢定與齊一較強檢力檢定的檢定尺度皆為 $\\alpha$,且齊一較強檢力檢定的檢定力皆高於交聯集檢定。
The calibration test of the PDs (probabilities of default) --- global test is twofold, the first part is the level test, which is about the mean of calibrated PDs. Second, the shape test is about whether a calibrated PD model differentiates correctly between low and high default probability events. In simulation results, we found that the type I error of global test is much greater than significant level $\\alpha$, so is level test in correlation default events. In this study, firstly, we use the truncated level test to control previous error and suggest the hypothesis $H_0: \\theta \\in \\cup_{i=1}^2 \\Theta_{i0}$ vs. $H_1: \\theta \\in \\cap_{i=1}^2 \\Theta_{i1}$. Secondly, we introduce the intersection union test (IUT). Moreover, we construct an uniformly more powerful test (UMP test) by Liu \\& Berger (1995, \\textit{The Annals of Statistics}, 23, 1, 55-72). Simulation results show that the IUT and UMP test are size $\\alpha$ tests, and the power of UMP test is greater than IUT.
參考文獻 Berger, R.L. (1989), “Uniformly more powerful tests for hypotheses concerning linear inequalities and normal means”, Journal of the American Statistical Association, 84(405), 192–199.
Blo ̈chlinger, A., Kantonalbank, Z., and Leippold, M. (2009), “Goodness-of-fit test for event forecasting”, Working paper.
Lehmann, EL (1952), “Testing multiparameter hypotheses”, The Annals of Mathe- matical Statistics, 541–552.
Liu, H. and Berger, R.L. (1995), “Uniformly more powerful, one-sided tests for hypotheses about linear inequalities”, The Annals of Statistics, 23(1), 55–72.
McDermott, Michael P. and Wang, Yining (2002), “Construction of uniformly more powerful tests for hypotheses about linear inequalities”, Journal of Statistical Planning and Inference, 107(1-2), 207 – 217.
Sasabuchi, S. (1980), “A test of a multivariate normal mean with composite hy- potheses determined by linear inequalities”, Biometrika, 67(2), 429.
Wilde, T. (1997), “Creditrisk+: A credit risk management framework”, Credit Suisse First Boston.
描述 碩士
國立政治大學
統計研究所
97354004
98
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0097354004
資料類型 thesis
dc.contributor.advisor 劉惠美<br>陳麗霞zh_TW
dc.contributor.advisor Liu,Huimei<br>Chen,Li Shyaen_US
dc.contributor.author (Authors) 郭書廷zh_TW
dc.contributor.author (Authors) Kuo,Shu Tingen_US
dc.creator (作者) 郭書廷zh_TW
dc.creator (作者) Kuo,Shu Tingen_US
dc.date (日期) 2009en_US
dc.date.accessioned 5-Sep-2013 15:09:46 (UTC+8)-
dc.date.available 5-Sep-2013 15:09:46 (UTC+8)-
dc.date.issued (上傳時間) 5-Sep-2013 15:09:46 (UTC+8)-
dc.identifier (Other Identifiers) G0097354004en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/60427-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計研究所zh_TW
dc.description (描述) 97354004zh_TW
dc.description (描述) 98zh_TW
dc.description.abstract (摘要) 違約機率校準檢定 - global test 由兩部分組成:第一部分為 level,探討真實的平均違約機率是否被高估;第二部分 shape,探討高低違約機率的表現情形。但 global test 與相關違約事件下的 level test 檢定尺度皆遠高於顯著水準 $\\alpha$。本文先是針對相關違約事件,利用截斷分配使 level test 犯型一誤差機率更接近顯著水準,並提出虛無假設及對立假設為 $H_0: \\theta \\in \\cup_{i=1}^2 \\Theta_{i0}$ vs. $H_1: \\theta \\in \\cap_{i=1}^2 \\Theta_{i1}$ 的形式,引用交聯集檢定。更進一步透過 Liu \\& Berger (1995, \\textit{The Annals of Statistics}, 23, 1, 55-72) 建構齊一較強檢力檢定,改善檢定力。模擬結果顯示交聯集檢定與齊一較強檢力檢定的檢定尺度皆為 $\\alpha$,且齊一較強檢力檢定的檢定力皆高於交聯集檢定。zh_TW
dc.description.abstract (摘要) The calibration test of the PDs (probabilities of default) --- global test is twofold, the first part is the level test, which is about the mean of calibrated PDs. Second, the shape test is about whether a calibrated PD model differentiates correctly between low and high default probability events. In simulation results, we found that the type I error of global test is much greater than significant level $\\alpha$, so is level test in correlation default events. In this study, firstly, we use the truncated level test to control previous error and suggest the hypothesis $H_0: \\theta \\in \\cup_{i=1}^2 \\Theta_{i0}$ vs. $H_1: \\theta \\in \\cap_{i=1}^2 \\Theta_{i1}$. Secondly, we introduce the intersection union test (IUT). Moreover, we construct an uniformly more powerful test (UMP test) by Liu \\& Berger (1995, \\textit{The Annals of Statistics}, 23, 1, 55-72). Simulation results show that the IUT and UMP test are size $\\alpha$ tests, and the power of UMP test is greater than IUT.en_US
dc.description.tableofcontents 中文摘要........................................... i
英文摘要........................................... ii
致謝............................................. iii
目錄............................................. iv
表目錄............................................ vi
圖目錄............................................ vii
第一章 緒論........................................ 1
第二章 文獻探討..................................... 3
2.1 符號定義.................................. 3
2.2 Blo ̈chlinger和Leippold(2009)校準檢定 ................ 4
2.2.1 Leveltest ............................. 4
2.2.2 Shapetest............................. 6
2.2.3 Level及Shape的漸近聯合分配.................. 9
2.2.4 Globaltest ............................ 10
2.3 交聯集檢定................................. 10
2.4 齊一較強檢力檢定 ............................. 11
第三章 研究方法..................................... 16
3.1 Truncatedleveltest............................ 16
3.2 建構最大概似比檢定............................ 18
3.3 建構齊一較強檢力檢定........................... 20
第四章 模擬分析比較 .................................. 23
4.1 參數設定.................................. 23
4.2 型一誤差及檢定力 ............................. 23
4.2.1 獨立的違約事件 .......................... 24
4.2.2 相關的違約事件 .......................... 25
第五章 結論與建議.................................... 36
參考文獻........................................... 38
附錄一:Shape檢定統計量之變異數........................... 39
附錄二:不同信用評等債務人違約人數相關係數..................... 41
zh_TW
dc.format.extent 2098898 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0097354004en_US
dc.subject (關鍵詞) 違約機率校準檢定zh_TW
dc.subject (關鍵詞) 交聯集檢定zh_TW
dc.subject (關鍵詞) 齊一較強檢力檢定zh_TW
dc.subject (關鍵詞) calibration testen_US
dc.subject (關鍵詞) intersection union testen_US
dc.subject (關鍵詞) uniformly more powerful testen_US
dc.title (題名) 信用違約機率的聯合校準檢定zh_TW
dc.title (題名) Joint Calibration Test of Credit Rating Probabilities of Defaulten_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Berger, R.L. (1989), “Uniformly more powerful tests for hypotheses concerning linear inequalities and normal means”, Journal of the American Statistical Association, 84(405), 192–199.
Blo ̈chlinger, A., Kantonalbank, Z., and Leippold, M. (2009), “Goodness-of-fit test for event forecasting”, Working paper.
Lehmann, EL (1952), “Testing multiparameter hypotheses”, The Annals of Mathe- matical Statistics, 541–552.
Liu, H. and Berger, R.L. (1995), “Uniformly more powerful, one-sided tests for hypotheses about linear inequalities”, The Annals of Statistics, 23(1), 55–72.
McDermott, Michael P. and Wang, Yining (2002), “Construction of uniformly more powerful tests for hypotheses about linear inequalities”, Journal of Statistical Planning and Inference, 107(1-2), 207 – 217.
Sasabuchi, S. (1980), “A test of a multivariate normal mean with composite hy- potheses determined by linear inequalities”, Biometrika, 67(2), 429.
Wilde, T. (1997), “Creditrisk+: A credit risk management framework”, Credit Suisse First Boston.
zh_TW