Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 以全波形光達之波形資料輔助製作植被覆蓋區數值高程模型
DEM Generation with Full-Waveform LiDAR Data in Vegetation Area作者 廖思睿
Liao, Sui Jui貢獻者 林士淵
Lin, Shih Yuan
廖思睿
Liao, Sui Jui關鍵詞 空載全波形雷射掃描
植被
貝氏定理
點雲過濾
數值高程模型
Airborne full-waveform laser scanning
vegetation land cover
point cloud filtering
Bayes theorem
DEM日期 2013 上傳時間 1-Oct-2013 11:51:05 (UTC+8) 摘要 在植被覆蓋的山區中,由於空載雷射掃描可穿透植被間縫隙的特性,有較高機會收集到植被下的地面資訊,因此適合作為製作植被覆蓋地區數值高程模型的資料來源,而在過濾過程中,一般僅利用點雲間的三維位置關係進行幾何過濾,而全波形空載雷射掃描可另外提供點位的波形寬、振幅值、散射截面積以及散射截面積數等波形資料,本研究將透過波形資料分析進行點雲過濾。首先經最低點採樣後,本研究利用貝氏定理自動分析並計算得到地面點的波形資料的特徵區間範圍,採用振幅值、散射截面積以及散射截面積係數得到的特徵區間範圍開始第一階段的波形資料過濾,完成後再以第二階段的一般幾何過濾濾除剩餘之非地面點,最後的成果將與航測以及只採用幾何過濾時的成果比較。由研究成果中顯示,不同的植被覆蓋間的單一回波波形資料的差異較明顯,最後回波類似。同一植被覆蓋下的單一回波及最後回波反應不同。而在成果的比較中,本實驗的成果與不採用波形資料輔助的成果大致相同本研究的成果在部分植被覆蓋的區域成果稍差,但透過波形過濾,可將幾何過濾所需計算的點雲數減少許多,可以增進整理過濾的效率。本研究的成果與航測相比時,在植被覆蓋區域較航測成果貼近實際的地面起伏,數值高程模型成果較為正確。
In mountain areas covered with vegetation, discrete airborne laser scanning is an appropriate technique to produce DEMs for its laser signal is able to reach the ground beneath the vegetation. Once the scanned data was derived, point cloud filtering was performed based on the geometry relationship between the points at the processing stage. With the development of the advanced full-waveform laser scanning system, the additional waveform data has been proved useful for improving the performance of point cloud filtering. This research therefore focused on using the waveform data to extract DEM over vegetation covered area.The amplitude, backscatter cross-section and backscatter cross-section coefficient were the waveform parameters used to do the filtering. After initial waveform analysis was accomplished, an automated method to determine threshold range of each parameter representing ground points was proposed. By applying the thresholds, the original point cloud was filtered. Geometric filtering method was then used to eliminate the remained non-ground points. As a result, the DEM over the target vegetated area was derived. With the comparison against photogrammetric DEM and DEM derived from traditional filtering method, it was demonstrated that the quality of the resultant DEM was improved.參考文獻 一、中文參考文獻王宏仁、王蜀嘉,1996,「GPS輔助空中三角測量經驗精度探討」。發表於〈第十五屆測量學術及應用研討會〉,國立政治大學,台北市,523-532。王蜀嘉、曾義星,2003,「高精度及高解析度數值地形模型測製規範工作報告」。內政部。王滙智,2007,「完整波形分析對於提升空載光達系統定位精度之研究」。國立台灣大學工學院土木工程學研究所碩士論文:台北。何心瑜,2006,「空載光達作業流程及品質管理之研究」。國立交通大學土木工程學系碩士論文:新竹。何維信,2004,『測量學』五版,台北:宏泰出版社。李志林、朱慶,2003,『數字高程模型』二版,武漢:武漢大學出版社。林郁珊,2011,「應用空載全波形光達資料於波形分析與地物分類」。國立交通大學土木工程學系碩士論文:新竹。林慧玲、陳正倉,2011,『應用統計學』四版,台北:雙葉書廊有限公司。邵怡誠、陳良健,2006,「空載光達點雲於DEM自動生產與精度評估—使用ISPRS測試資料為例」。『航測及遙測學刊』,11(1):1-12。二、外文參考文獻Abshire, J. M., McGarray, J.F., Pacini, L.K., Blair, J.B. and Elman, C.G., 1994, Laser Altimetry Simulator version 3.0, User’s Guide, USA: NASA Technical Memorandum 104588.Axelsson, P., 2000, “DEM generation from laser scanner data using adaptive TIN models”, International archives of Photogrammetry and Remote Sensing, 33(Part B4), 110-117.Beraldin, J. A., Blais, F. and Lohr, U., 2010, “Laser Scanning Technology”, pp.1-42 in Airborne and terrestrial Laser Scanning, edited by Vosselmen, G. and Maas, H-G., UK: Whittles Publishing.Doneus, M., Briese, C., 2006, “Digital terrain modelling for archaeological interpretation within forested areas using full-waveform laser scanning”, pp.155-162 in The 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST, edited by Arnold, D., Ioannides, M., Niccolucci, F. and Mania, K., Cyprus.Doneus, M., Briese, C., Fera, M., Janner, M., 2008, “Archaeological prospection of forested areas using full-waveform airborne laser scanning”, Journal of Archaeological Science, 35:882-893.Ducic, V., Hollaus, M., Ullrich, A., Wagner, W. and Melzer, T., 2006. “3D vegetation mapping and classification using full-waveform laser scanning”. Workshop on 3D Remote Sensing in Forestry, 14-15 February 2006, Vienna. 211-217.Frohlich, C. and Mettenleiter, M., 2004, “Terrestrial laser scanning – new perspectives in 3D surveying”, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(8/W2): 7-13.Jutzi, B. and Stilla, U., 2006, “Range determination with waveform recordinglaser systems using a Wiener Filter”, ISPRS Journal of Photogrammetry & Remote Sensing, 61: 95-107.Kraus, K., Pfeifer, N., 1998, “Determination of terrain models in wooded areas with airborne laser scanner data”, ISPRS Journal of Photogrammetry & Remote Sensing, 53, 193–203.Lin, Y. C., 2009, Digital Terrain Modelling from Small-footprint, Full-Waveform Airborne Laser Scanning Data, School of Civil Engineering and Geosciences, New Castle University, UK. Lin, Y. C. and Mills, J. P., 2010, “Factors influencing pulse width of small-footprint, full-waveform airborne laser scanning data”, Photogrammetric Engineering & Remote Sensing, 76(1): 49-59.Lin, Y. C. and Mills, J. P., and Smith-Voysey, S., 2010, “Rigorous pulse detection from full-waveform airborne laser scanning data”, International Journal of Remote Sensing, 31(5):1303-1324.Mallet, C. and Bretar, F., 2009, “Full-waveform topographic lidar: State-of-the-art”, ISPRS Journal of Photogrammetry and Remote Sensing, 64, 1-13.Mücke, W., 2008, Analysis of Full-Waveform Airborne Laser Scanning Data for the Improvement of DTM Generation, Vienna University of Technology, Vienna, Austria.Persson, Å., Söderman, U., Töpel, J. and Ahlberg, S., 2005. “Visualization and analysis of fullwaveform airborne laser scanner data”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(3/W19): 103-108Sithole, G. and Vosselman, G., 2003. “Report: ISPRS Comparison of Filters”. ISPRS Commission III, Working Group 3.Sithole, G. and Vosselman, G., 2004. “Experimental comparison of filter algorithms for bare Earth extraction from airborne laser scanning point clouds”, ISPRS Journal of Photogrammetry & Remote Sensing, 59: 85-101.Stilla, U., and Jutzi, B., 2008, “Waveform Analysis for Small-Footprint Pulsed Laser Systems”, pp.215-235 in Topographic Laser Ranging and Scanning: Principles and Processing, edited by Shan, J. and Toth, C., K., US: CRC Press.Wagner, W., 2010, “Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts”. ISPRS Journal of Photogrammetry & Remote Sensing, 65: 505-513.Wagner, W., Hollaus, M., Briese, C. and Ducic, V., 2008. “3D vegetation mapping using smallfootprint full-waveform airborne laser scanners”. International Journal of Remote Sensing, 29(5):1433-1452.Wagner, W., Ullrich, A., Ducic, V., Melzer, T. and Studnicka, N., 2006. “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laserscanner”. ISPRS Journal of Photogrammetry & Remote Sensing, 60: 100-112.Wagner, W., Ullrich, A., Melzer, T., Briese, C. and Kraus, K., 2004. “From single-pulse to fullwaveform airborne laser scanners: potential and practical challenge”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(B3): 201-206.Wang, C. K., “Exploring weak and overlapped returns of a LIDAR waveform with a wavelet-based echo detector”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39(B7): 529-534.Wolf, P. R. and Dewitt, B. A., 2000. Elements of Photogrammetry: with Applications in GIS, third edition. New York, USA: McGraw Hill. 三、網頁部分Riegl, 2012a. Long range airborne laser scanner for full-waveform snalysis LMS-Q680. http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_LMS-Q680i_04-04-2012_01.pdf (accessed 23 April. 2012)Riegl, 2012b. Full-waveform analysis software RiAnalysis. http://www.riegl.com/uploads/tx_pxpriegldownloads/11_Datasheet_RiANALYZE_22-09-2010.pdf (accessed 23 April. 2012) 描述 碩士
國立政治大學
地政研究所
99257026
102資料來源 http://thesis.lib.nccu.edu.tw/record/#G0099257026 資料類型 thesis dc.contributor.advisor 林士淵 zh_TW dc.contributor.advisor Lin, Shih Yuan en_US dc.contributor.author (Authors) 廖思睿 zh_TW dc.contributor.author (Authors) Liao, Sui Jui en_US dc.creator (作者) 廖思睿 zh_TW dc.creator (作者) Liao, Sui Jui en_US dc.date (日期) 2013 en_US dc.date.accessioned 1-Oct-2013 11:51:05 (UTC+8) - dc.date.available 1-Oct-2013 11:51:05 (UTC+8) - dc.date.issued (上傳時間) 1-Oct-2013 11:51:05 (UTC+8) - dc.identifier (Other Identifiers) G0099257026 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/61169 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 地政研究所 zh_TW dc.description (描述) 99257026 zh_TW dc.description (描述) 102 zh_TW dc.description.abstract (摘要) 在植被覆蓋的山區中,由於空載雷射掃描可穿透植被間縫隙的特性,有較高機會收集到植被下的地面資訊,因此適合作為製作植被覆蓋地區數值高程模型的資料來源,而在過濾過程中,一般僅利用點雲間的三維位置關係進行幾何過濾,而全波形空載雷射掃描可另外提供點位的波形寬、振幅值、散射截面積以及散射截面積數等波形資料,本研究將透過波形資料分析進行點雲過濾。首先經最低點採樣後,本研究利用貝氏定理自動分析並計算得到地面點的波形資料的特徵區間範圍,採用振幅值、散射截面積以及散射截面積係數得到的特徵區間範圍開始第一階段的波形資料過濾,完成後再以第二階段的一般幾何過濾濾除剩餘之非地面點,最後的成果將與航測以及只採用幾何過濾時的成果比較。由研究成果中顯示,不同的植被覆蓋間的單一回波波形資料的差異較明顯,最後回波類似。同一植被覆蓋下的單一回波及最後回波反應不同。而在成果的比較中,本實驗的成果與不採用波形資料輔助的成果大致相同本研究的成果在部分植被覆蓋的區域成果稍差,但透過波形過濾,可將幾何過濾所需計算的點雲數減少許多,可以增進整理過濾的效率。本研究的成果與航測相比時,在植被覆蓋區域較航測成果貼近實際的地面起伏,數值高程模型成果較為正確。 zh_TW dc.description.abstract (摘要) In mountain areas covered with vegetation, discrete airborne laser scanning is an appropriate technique to produce DEMs for its laser signal is able to reach the ground beneath the vegetation. Once the scanned data was derived, point cloud filtering was performed based on the geometry relationship between the points at the processing stage. With the development of the advanced full-waveform laser scanning system, the additional waveform data has been proved useful for improving the performance of point cloud filtering. This research therefore focused on using the waveform data to extract DEM over vegetation covered area.The amplitude, backscatter cross-section and backscatter cross-section coefficient were the waveform parameters used to do the filtering. After initial waveform analysis was accomplished, an automated method to determine threshold range of each parameter representing ground points was proposed. By applying the thresholds, the original point cloud was filtered. Geometric filtering method was then used to eliminate the remained non-ground points. As a result, the DEM over the target vegetated area was derived. With the comparison against photogrammetric DEM and DEM derived from traditional filtering method, it was demonstrated that the quality of the resultant DEM was improved. en_US dc.description.tableofcontents 第一章 緒論 5第一節 研究動機 5第二節 研究目的 9第三節 研究流程 10第二章 文獻回顧 12第一節 製作植被遮蔽區數值高程模型 12第二節 全波形空載雷射掃描 15第三節 全波形資料的應用 24第三章 研究方法 38第一節 研究資料 38第二節 波形資料解算 41第三節 以貝氏定理分析波形資料特徵 43第四節 幾何過濾 45第四章 研究成果 47第一節 不同植被覆蓋波形資料 47第二節 波形資料門檻值計算以及波形過濾結果 49第三節 幾何過濾成果與檢核 63第五章 實驗討論 70第六章 結論與建議 76 zh_TW dc.format.extent 4271514 bytes - dc.format.mimetype application/pdf - dc.language.iso en_US - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0099257026 en_US dc.subject (關鍵詞) 空載全波形雷射掃描 zh_TW dc.subject (關鍵詞) 植被 zh_TW dc.subject (關鍵詞) 貝氏定理 zh_TW dc.subject (關鍵詞) 點雲過濾 zh_TW dc.subject (關鍵詞) 數值高程模型 zh_TW dc.subject (關鍵詞) Airborne full-waveform laser scanning en_US dc.subject (關鍵詞) vegetation land cover en_US dc.subject (關鍵詞) point cloud filtering en_US dc.subject (關鍵詞) Bayes theorem en_US dc.subject (關鍵詞) DEM en_US dc.title (題名) 以全波形光達之波形資料輔助製作植被覆蓋區數值高程模型 zh_TW dc.title (題名) DEM Generation with Full-Waveform LiDAR Data in Vegetation Area en_US dc.type (資料類型) thesis en dc.relation.reference (參考文獻) 一、中文參考文獻王宏仁、王蜀嘉,1996,「GPS輔助空中三角測量經驗精度探討」。發表於〈第十五屆測量學術及應用研討會〉,國立政治大學,台北市,523-532。王蜀嘉、曾義星,2003,「高精度及高解析度數值地形模型測製規範工作報告」。內政部。王滙智,2007,「完整波形分析對於提升空載光達系統定位精度之研究」。國立台灣大學工學院土木工程學研究所碩士論文:台北。何心瑜,2006,「空載光達作業流程及品質管理之研究」。國立交通大學土木工程學系碩士論文:新竹。何維信,2004,『測量學』五版,台北:宏泰出版社。李志林、朱慶,2003,『數字高程模型』二版,武漢:武漢大學出版社。林郁珊,2011,「應用空載全波形光達資料於波形分析與地物分類」。國立交通大學土木工程學系碩士論文:新竹。林慧玲、陳正倉,2011,『應用統計學』四版,台北:雙葉書廊有限公司。邵怡誠、陳良健,2006,「空載光達點雲於DEM自動生產與精度評估—使用ISPRS測試資料為例」。『航測及遙測學刊』,11(1):1-12。二、外文參考文獻Abshire, J. M., McGarray, J.F., Pacini, L.K., Blair, J.B. and Elman, C.G., 1994, Laser Altimetry Simulator version 3.0, User’s Guide, USA: NASA Technical Memorandum 104588.Axelsson, P., 2000, “DEM generation from laser scanner data using adaptive TIN models”, International archives of Photogrammetry and Remote Sensing, 33(Part B4), 110-117.Beraldin, J. A., Blais, F. and Lohr, U., 2010, “Laser Scanning Technology”, pp.1-42 in Airborne and terrestrial Laser Scanning, edited by Vosselmen, G. and Maas, H-G., UK: Whittles Publishing.Doneus, M., Briese, C., 2006, “Digital terrain modelling for archaeological interpretation within forested areas using full-waveform laser scanning”, pp.155-162 in The 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST, edited by Arnold, D., Ioannides, M., Niccolucci, F. and Mania, K., Cyprus.Doneus, M., Briese, C., Fera, M., Janner, M., 2008, “Archaeological prospection of forested areas using full-waveform airborne laser scanning”, Journal of Archaeological Science, 35:882-893.Ducic, V., Hollaus, M., Ullrich, A., Wagner, W. and Melzer, T., 2006. “3D vegetation mapping and classification using full-waveform laser scanning”. Workshop on 3D Remote Sensing in Forestry, 14-15 February 2006, Vienna. 211-217.Frohlich, C. and Mettenleiter, M., 2004, “Terrestrial laser scanning – new perspectives in 3D surveying”, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(8/W2): 7-13.Jutzi, B. and Stilla, U., 2006, “Range determination with waveform recordinglaser systems using a Wiener Filter”, ISPRS Journal of Photogrammetry & Remote Sensing, 61: 95-107.Kraus, K., Pfeifer, N., 1998, “Determination of terrain models in wooded areas with airborne laser scanner data”, ISPRS Journal of Photogrammetry & Remote Sensing, 53, 193–203.Lin, Y. C., 2009, Digital Terrain Modelling from Small-footprint, Full-Waveform Airborne Laser Scanning Data, School of Civil Engineering and Geosciences, New Castle University, UK. Lin, Y. C. and Mills, J. P., 2010, “Factors influencing pulse width of small-footprint, full-waveform airborne laser scanning data”, Photogrammetric Engineering & Remote Sensing, 76(1): 49-59.Lin, Y. C. and Mills, J. P., and Smith-Voysey, S., 2010, “Rigorous pulse detection from full-waveform airborne laser scanning data”, International Journal of Remote Sensing, 31(5):1303-1324.Mallet, C. and Bretar, F., 2009, “Full-waveform topographic lidar: State-of-the-art”, ISPRS Journal of Photogrammetry and Remote Sensing, 64, 1-13.Mücke, W., 2008, Analysis of Full-Waveform Airborne Laser Scanning Data for the Improvement of DTM Generation, Vienna University of Technology, Vienna, Austria.Persson, Å., Söderman, U., Töpel, J. and Ahlberg, S., 2005. “Visualization and analysis of fullwaveform airborne laser scanner data”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(3/W19): 103-108Sithole, G. and Vosselman, G., 2003. “Report: ISPRS Comparison of Filters”. ISPRS Commission III, Working Group 3.Sithole, G. and Vosselman, G., 2004. “Experimental comparison of filter algorithms for bare Earth extraction from airborne laser scanning point clouds”, ISPRS Journal of Photogrammetry & Remote Sensing, 59: 85-101.Stilla, U., and Jutzi, B., 2008, “Waveform Analysis for Small-Footprint Pulsed Laser Systems”, pp.215-235 in Topographic Laser Ranging and Scanning: Principles and Processing, edited by Shan, J. and Toth, C., K., US: CRC Press.Wagner, W., 2010, “Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts”. ISPRS Journal of Photogrammetry & Remote Sensing, 65: 505-513.Wagner, W., Hollaus, M., Briese, C. and Ducic, V., 2008. “3D vegetation mapping using smallfootprint full-waveform airborne laser scanners”. International Journal of Remote Sensing, 29(5):1433-1452.Wagner, W., Ullrich, A., Ducic, V., Melzer, T. and Studnicka, N., 2006. “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laserscanner”. ISPRS Journal of Photogrammetry & Remote Sensing, 60: 100-112.Wagner, W., Ullrich, A., Melzer, T., Briese, C. and Kraus, K., 2004. “From single-pulse to fullwaveform airborne laser scanners: potential and practical challenge”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(B3): 201-206.Wang, C. K., “Exploring weak and overlapped returns of a LIDAR waveform with a wavelet-based echo detector”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39(B7): 529-534.Wolf, P. R. and Dewitt, B. A., 2000. Elements of Photogrammetry: with Applications in GIS, third edition. New York, USA: McGraw Hill. 三、網頁部分Riegl, 2012a. Long range airborne laser scanner for full-waveform snalysis LMS-Q680. http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_LMS-Q680i_04-04-2012_01.pdf (accessed 23 April. 2012)Riegl, 2012b. Full-waveform analysis software RiAnalysis. http://www.riegl.com/uploads/tx_pxpriegldownloads/11_Datasheet_RiANALYZE_22-09-2010.pdf (accessed 23 April. 2012) zh_TW