Publications-NSC Projects

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 多分類器系統建構之理論與實務
作者 徐國偉
Hsu,Kuo-Wei
貢獻者 國立政治大學資訊科學系
關鍵詞 多分類器系統;分類器差異性;分類器整合
Multiple Classifier System;Multi-Classifier System;Ensemble;Diversity;Classifier Combination
日期 2012
上傳時間 11-Oct-2013 15:13:07 (UTC+8)
摘要 本計畫旨在發展多分類器系統建構之理論與實務。近年來在
     資料探勘領域,多分類器系統是一個越來越有吸引力的研究
     主題且被應用在各式各樣的領域。然而,我們對其基礎仍然
     缺乏全面了解。我們可能知道哪個多分類器系統是有效的,
     但是我們卻不清楚它為什麼有效,而且我們對於如何有效地
     建構一個有效的多分類器系統的知識是有限的。雖然有許多
     成功的案例,但是在更多案例裡面多分類器系統不被認為是
     成功的。因此,能夠解釋為何一個多分類器系統是不成功的
     與能夠解釋為何一個多分類器系統是成功的是同等重要。再
     者,大多數多分類器系統採取的是針對特定問題或資料的特
     別設計,然而這樣的設計嚴格限制了他們可能的延伸與應
     用。如何設計一個泛用型的多分類器系統是一個重要的研究
     課題。在本計畫中,我們將採用理論與實證研究去對多分類
     器系統的建構做深入的探討,並聚焦於以異質分類演算法建
     置的多分類器系統。本計畫可對國內外的多分類器系統研究
     與應用做出實質貢獻,而部分研究成果已發表於專業國際會
     議。
The purpose of this project is to develop theory and
     practice of the construction of Multiple Classifier
     System. Recently, in the data mining field, Multiple
     Classifier System has been an increasingly attractive
     research topic and been applied to various domains.
     However, we still lack a comprehensive understanding
     of its foundation. We may know which Multiple
     Classifier System is effective but we are not clear
     why it is effective, and we have limited knowledge of
     how to effectively construct an effective Multiple
     System. Although there are many success cases, there
     are even more cases where Multiple Classifier System
     is not considered success. Therefore, being able to
     explain why a Multiple Classifier System is
     unsuccessful is equally important to being able to
     explain why a Multiple Classifier System is
     successful. Furthermore, most systems are ad-hoc
     designs, i.e. they are designed specifically to some
     problems or data sets, while such designs severely
     restrict their possible extensions and applications.
     For that reason, a critical research topic is how to
     design a general-purpose Multiple Classifier System.
     In this project, we plan to use theoretical and
     empirical study to have an in-depth of the
     construction of Multiple Classifier System, and we
     will focus on the Multiple Classifier Systems built
     on heterogeneous classification algorithms. This
     project could make practical contributions to
     research and applications of Multiple Classifier
     System, and part of the results have been published
     on professional international conferences.
關聯 執行期間:10008-10107
資料類型 report
dc.contributor 國立政治大學資訊科學系en_US
dc.creator (作者) 徐國偉zh_TW
dc.creator (作者) Hsu,Kuo-Wei-
dc.date (日期) 2012en_US
dc.date.accessioned 11-Oct-2013 15:13:07 (UTC+8)-
dc.date.available 11-Oct-2013 15:13:07 (UTC+8)-
dc.date.issued (上傳時間) 11-Oct-2013 15:13:07 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/61318-
dc.description.abstract (摘要) 本計畫旨在發展多分類器系統建構之理論與實務。近年來在
     資料探勘領域,多分類器系統是一個越來越有吸引力的研究
     主題且被應用在各式各樣的領域。然而,我們對其基礎仍然
     缺乏全面了解。我們可能知道哪個多分類器系統是有效的,
     但是我們卻不清楚它為什麼有效,而且我們對於如何有效地
     建構一個有效的多分類器系統的知識是有限的。雖然有許多
     成功的案例,但是在更多案例裡面多分類器系統不被認為是
     成功的。因此,能夠解釋為何一個多分類器系統是不成功的
     與能夠解釋為何一個多分類器系統是成功的是同等重要。再
     者,大多數多分類器系統採取的是針對特定問題或資料的特
     別設計,然而這樣的設計嚴格限制了他們可能的延伸與應
     用。如何設計一個泛用型的多分類器系統是一個重要的研究
     課題。在本計畫中,我們將採用理論與實證研究去對多分類
     器系統的建構做深入的探討,並聚焦於以異質分類演算法建
     置的多分類器系統。本計畫可對國內外的多分類器系統研究
     與應用做出實質貢獻,而部分研究成果已發表於專業國際會
     議。
-
dc.description.abstract (摘要) The purpose of this project is to develop theory and
     practice of the construction of Multiple Classifier
     System. Recently, in the data mining field, Multiple
     Classifier System has been an increasingly attractive
     research topic and been applied to various domains.
     However, we still lack a comprehensive understanding
     of its foundation. We may know which Multiple
     Classifier System is effective but we are not clear
     why it is effective, and we have limited knowledge of
     how to effectively construct an effective Multiple
     System. Although there are many success cases, there
     are even more cases where Multiple Classifier System
     is not considered success. Therefore, being able to
     explain why a Multiple Classifier System is
     unsuccessful is equally important to being able to
     explain why a Multiple Classifier System is
     successful. Furthermore, most systems are ad-hoc
     designs, i.e. they are designed specifically to some
     problems or data sets, while such designs severely
     restrict their possible extensions and applications.
     For that reason, a critical research topic is how to
     design a general-purpose Multiple Classifier System.
     In this project, we plan to use theoretical and
     empirical study to have an in-depth of the
     construction of Multiple Classifier System, and we
     will focus on the Multiple Classifier Systems built
     on heterogeneous classification algorithms. This
     project could make practical contributions to
     research and applications of Multiple Classifier
     System, and part of the results have been published
     on professional international conferences.
-
dc.format.extent 2381107 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.relation (關聯) 執行期間:10008-10107en_US
dc.subject (關鍵詞) 多分類器系統;分類器差異性;分類器整合en_US
dc.subject (關鍵詞) Multiple Classifier System;Multi-Classifier System;Ensemble;Diversity;Classifier Combinationen_US
dc.title (題名) 多分類器系統建構之理論與實務zh_TW
dc.type (資料類型) reporten