Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 多視角影像中的退化問題與參數估測
Degeneracies and Parameter Estimation in Multiple View Images
作者 詹凱軒
Chan, Kai Hsuan
貢獻者 何瑁鎧<br>郭正佩<br>唐政元
Hor, Maw Kae<br>Kuo, Pei Jeng<br>Tang, Cheng Yuan
詹凱軒
Chan, Kai Hsuan
關鍵詞 退化
參數估測
多視角幾何
緊要配置
粒子群最佳化
貼片匹配法
degeneracy
parameter estimation
multiple view geometry
critical configuration
particle swarm optimization
patch-based matching
日期 2013
上傳時間 1-Nov-2013 11:43:28 (UTC+8)
摘要 多視角影像比起單一影像,可提供更多資訊,有助於影像之分析、比對與建模。相關研究諸如利用多視角影像進行三維模型重建、影像拼接、影像修補、利用多視角攝影機進行物體與人物追蹤、與四維動態模型捕捉等。然而,多視角影像的研究中,自動且精確的偵測影像對應點一直是個困難的問題。其中多視角影像的退化(degeneracy)問題,經常被研究者所忽略,而此一問題往往造成幾何關係上錯誤的估算,影響後續處理的精確度。
本研究中我們所定義之退化問題涵蓋範圍較廣,包含傳統數學上的退化,以及同時考慮多視角幾何與影像紋路匹配所造成之問題,我們將這些問題歸納成三種類型並進行探討:第一種類型,當相機參數未知、且影像幾何關係也未估算時,需透過對應點進行影像幾何的計算,若這些對應點相對之三維座標與相機中心之配置,剛好落在特定曲面或平面之情況,則會造成錯誤的估算;第二種類型,當相機參數已知、或已估算求得影像幾何關係時,透過這些估算的幾何關係,進行對應點的轉換,在特定情況下也會造成錯誤的結果;第三種類型,當我們透過多視角幾何關係,結合影像紋路,利用貼片(patch-based)方法進行對應點相似度評估時,容易因為視角的差異、比例的差異、及貼片平面與物體表面的差異,造成無法正確評估之問題。
我們針對這三種類型的退化問題,分別進行分析與探討,並提供適當的建議與處理方法,以避開可能遇到的退化狀況。同時,無論是在對應點的估算、多視角三維重建、與多視角幾何的評估等,通常需要透過強健的參數估測方法來求得,我們也分析、討論近年許多代表性的參數估測方法,並提出更穩健的估測方法,應用於處理特定退化問題。
透過我們提出的退化規避方法,能有效的提高多視角影像處理與重建三維模型的精確度。
Multiple view images carry much more information than that in single view images. This information is helpful in analyzing, matching, and reconstruction the points and models in real scenes. There are many related researches such as three-dimensional model reconstruction from multi-view images, multi-view image stitching, multi-view image inpainting, multi-view object and human tracking as well as four-dimensional dynamic model capture, etc. However, automatic and accurate corresponding point matching is one of the difficult problems in multiple view researches. Moreover, the multi-view degeneracy problems are normally ignored by researchers. These problems will include geometric estimation error and cause inaccuracy in subsequently processing.
In this dissertation, the definition of the degeneracy covers a wider scope. It includes the traditional degeneracy as discussed in mathematics as well as the corresponding point matching error caused by the model inaccuracy in geometries and in textures. We classify these problems into three categories and provide methods and guidelines for avoiding the degeneracy problems in multi-view image processing. The first category assumes the camera parameters or the geometries (for example, the fundamental matrix) are unknown and which must be estimated using the corresponding points. If the 3D locations of the corresponding points and the camera centers fall into particular configurations, such as the ruled quadric, the camera parameters estimation may yield multiple solutions or erroneous results. The second category assumes the camera geometry is known or known geometries (for example, the fundamental matrix or the trifocal tensor) are used to transfer the corresponding points. It may cause erroneous estimation under certain conditions. The third category occurs if we use the patch-based method to estimate the similarity of the corresponding points in multiple views, it will cause unreasonable estimation due to different viewing angle, image scaling, or inconsistencies between the patch plane and the object surface.
We propose various guidelines as well as processing methods in order to avoid the degeneracies. In addition, it generally requires robust parameter estimation methods to accomplish for the corresponding point estimations, the 3D reconstructions from multiple views, as well as for the multi-view geometries estimations. We analyzed the most representative parameter estimation methods developed in recent years and proposed the more robust methods that can be used to handle the specific degeneracy problems.
Using the proposed methods and guidelines for degeneracy avoidance, we can effectively improve the accuracy of the multi-view image processing as well as 3D model reconstructions.
參考文獻 [1] Agarwal, S., Y. Furukawa, N. Snavely, B. Curless, S.M. Seitz, and R. Szeliski, Reconstructing Rome, IEEE Computer Society, Vol. 43, pp. 40-47, 2010.
[2] Agarwal, S., Y. Furukawa, N. Snavely, B. Curless, S. M. Seitz and R. Szeliski, Building Rome in a Day. Communications of the ACM, Vol. 54, No. 14, pp. 105-112, 2011.
[3] Armangué, X. and J. Salvi, Overall View Regarding Fundamental Matrix Estimation. Image and Vision Computing, Vol. 21, No. 2, pp. 205-220, 2003.
[4] Barjatya, A., Block Matching Algorithm for Motion Estimation. DIP 6620 Final Project Paper, 2004.
[5] Barnard, S. T. and M.A. Fischler, Computational Stereo. ACM Computing Surveys, Vol. 14, pp. 553-572, 1982.
[6] Beck, J.V. and K.J. Arnold, Parameter Estimation in Engineering and Science. Wiley series in probability and mathematical statistics, Wiley, New York, 1977.
[7] Bouguet, J.Y., Camera Calibration Toolbox for Matlab, 2010, Online URL
[8] Bradley, D., T. Boubekeur, and W. Heidrich, Accurate Multi-View Reconstruction Using Robust Binocular Stereo and Surface Meshing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2008.
[9] Brahmachari, A.S., S. Sarkar, BLOGS: Balanced Local and Global Search for Non-Degenerate Two View Epipolar Geometry. In Proceedings of the Twelfth International Conference on Computer Vision, Kyoto, Japan 2009.
[10] Brown, M. and D. Lowe, Automatic Panoramic Image Stitching Using Invariant Features. In International Journal of Computer Vision, Vol. 74, No. 1, pp. 59-77, 2007.
[11] Brown, M. and D. G. Lowe, Unsupervised 3D Object Recognition and Reconstruction in Unordered Datasets. International Conference on 3-D Digital Imaging and Modeling, 2005.
[12] Campbell, N.D.F., G. Vogiatzis, C. Hernández, and R. Cipolla, Automatic 3D Object Segmentation in Multiple Views Using Volumetric Graph-Cuts. Image and Vision Computing, Vol. 28, pp. 14-25, 2008.
[13] Campbell, N.D.F., G. Vogiatzis, C. Hernández, and R. Cipolla, Using Multiple Hypotheses to Improve Depth-Maps for Multi-View Stereo. In Proceedings of the European Conference of Computer Vision, pp. 766-779, 2008.
[14] Cernuschi-Frias, B., Cooper, D. B., Hung, Y.-P., Belhumeur, P. N.,1989. Toward a Model-Based Bayesian Theory for Estimating and Recognizing Parameterized 3-D Objects Using Two or More Images Taken from Different Positions. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, 1028-1052.
[15] Chai, J. and S.D. Ma, Robust epipolar geometry estimation using genetic algorithm. Pattern Recognition Letters. Vol. 19, No. 9, pp. 829-838, 1998.
[16] Chan, K.-H., C.-Y. Tang, M.-K. Hor, and Y.-L. Wu, Robust trifocal tensor constraints for structure from motion estimation. Pattern Recognition Letters, Vol. 34, No. 6, pp. 627-636, 2013.
[17] Chan, K.-H., C.-Y. Tang, Y.-L. Wu, and M.-K. Hor, Robust Orthogonal Particle Swarm Optimization for Estimating the Fundamental Matrix, In Proceedings of IEEE Visual Communications and Image Processing, Tainan, Taiwan, November 2011.
[18] Chum, O. and J. Matas, Matching with PROSAC - Progressive Sample Consensus. In Conference on Computer Vision and Pattern Recognition, pp. 220-226, 2005.
[19] Connor, K. and I. Reid, Novel view specification and synthesis. In Proceeding of the British Machine Vision Conference, 2002.
[20] Dhond, U. R. and J. K. Aggarwal, Structure from Stereo: a Review. IEEE Transactions on System, Man, and Cybernetics, Vol. 19, pp. 1489-1510, 1989.
[21] Durrant-Whyte, H. and T. Bailey, Simultaneous localization and mapping: part I. IEEE Robotics and Automation Magazine, Vol. 13, No. 2, pp. 99-108, 2006.
[22] Eberhart, R. and Y. Shi, Particle Swarm Optimization: Developments, Applications and Resources. In Proceedings of the 2001 Congress on Evolutionary Computation, pp. 81-86, 2001.
[23] Faugeras, O. and B. Mourrain, About the Correspondences of Points Between N Images. In Proceedings of the IEEE Workshop on Representation of Visual Scenes, pp. 37–44, 1995.
[24] Faugeras, O.D., L. Quan, and P. Sturm, Self-calibration of a 1D Projective Camera and its Application to the Self-calibration of a 2D Projective Camera. In Proceeding of the European Conference on Computer Vision, Vol. 1, pp. 36-52, 1998.
[25] Faugeras, O. D., Q. Luong, and S. Maybank,. Camera self-calibration: Theory and experiments. In Proceeding of the European Conference on Computer Vision, pp. 321-334, 1992.
[26] Feng, C.L. and Y.S. Hung, A Robust Method for Estimating the Fundamental Matrix. In Proceedings of Conference on Digital Image Computing: Techniques and Applications, pp. 633-642, 2003.
[27] Fischler, M. A. and R. C. Bolles, Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, Vol. 24, pp. 381-395, 1981.
[28] Forsyth, D. A. and J. Ponce, Computer Vision A Modern Approach. Second Edition, Prentice Hall, New Jersey, 2011.
[29] Föstner, W., Reliability Analysis of Parameter Estimation in Linear Models with Application to Mensuration Problems in Computer Vision. Computer Vision, Graphics and Image Processing, Vol. 40, No. 3, pp. 273-310, 1987.
[30] Frahm, J.-M., P. Fite-Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu, Y.-H. Jen, E. Dunn, B. Clipp, S. Lazebnik, and M. Pollefeys, Building Rome on a Cloudless Day. In Proceedings of the European Conference on Computer Vision, pp. 368–381, 2010.
[31] Furukawa, Y. and J. Ponce, Accurate Camera Calibration from Multi-view Stereo and Bundle Adjustment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2008.
[32] Furukawa, Y. and J. Ponce, Accurate, Dense, and Robust Multi-view Stereopsis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2007.
[33] Furukawa, Y. and J. Ponce, High-fidelity image-based modeling. Technical Report, UIUC, 2006.
[34] Furukawa, Y., B. Curless, S.M. Seitz, and R. Szeliski, Towards Internet-scale Multi-view Stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1434-1441, 2010.
[35] Furukawa, Y., Patch-based Multi-view Stereo Software, 2010, Online URL < http://grail.cs.washington.edu/software/pmvs/>.
[36] Gao, W., Robot Vision Group Data Set, 2011. Online URL < http://vision.ia.ac.cn/index.htm>.
[37] Goesele, M., N. Snavely, B. Curless, H. Hoppe, and S.M. Seitz, Multi-View Stereo for Community Photo Collections. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1-8, 2007.
[38] Hartley, R. I. and A. Zisserman, Multiple View Geometry in Computer Vision, Second Edition, Cambridge University Press, 2004.
[39] Hartley, R. I., and F. Kahl, A Critical Configuration for Reconstruction from Rectilinear Motion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 511–517, 2003.
[40] Hartley R. I. and F. Kahl, Critical Configurations for Projective Reconstruction from Multiple Views. International Journal of Computer Vision, Vol. 71, No. 1, pp.5-47, 2006.
[41] Hedayat, A. S., N. J. A. Sloane, and J. Stufken, Orthogonal Arrays: Theory and Applications. New York: Springer-Verlag, 1999.
[42] Heinrich, S. B. and W.E. Snyder, Internal Constraints of the Trifocal Tensor. In Proceedings of CoRR, 2011.
[43] Hiep, V.H., R. Keriven, P. Labatut, and J.P. Pons, Towards High-resolution Large-scale Multi-view Stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1430-1437, 2009.
[44] Ho, S.-Y., H.-S. Lin, W.-H. Liauh, and S.-J. Ho, OPSO: Orthogonal Particle Swarm Optimization and Its Application to Task Assignment Problems. IEEE Transactions on Systems, Man, and Cybernetics—Part a: Systems and Humans, Vol. 38, No. 2, pp. 288-298, 2008.
[45] Hor, M.-K., C.-Y. Tang, Y.-L. Wu, K.-H. Chan, and J.-J. Tsai, Robust Refinement Methods for Camera Calibration and 3D Reconstruction from Multiple Images. Pattern Recognition Letters, Vol. 32, No. 8, pp.1210-1221, 2011.
[46] Hor, M.-K., and K.-H. Chan, and C.-Y. Tang, 3D Model Reconstruction Refinement from Multiple Images. International Conference on Multimedia Technology, 2011.
[47] Hor, M.-K., W.-C. Chen, C.-Y. Tang, Y.-L. Wu, K.-H. Chan, and K.-S. Wu, Refinement of 3D Models Reconstructed from Visual Hull. International Display Manufacturing Conference/3D Display System and Application/Asia Display, 2009.
[48] Hor, M.-K., W.-C. Chen, C.-Y. Tang, Y.-L. Wu, K.-H. Chan, and J.-J. Tsai, Using 3D Patches for Refinement of 3D Reconstruction from Multiple Images. International Display Manufacturing Conference/3D Display System and Application/Asia Display, 2009.
[49] Hor, M.-K., W.-C. Chen, C.-Y. Tang, Y.-L. Wu, K.-H. Chan, and J.-Y. Tsai, Generation of Dense Image Matching Using Epipolar Geometry. International Display Manufacturing Conference/3D Display System and Application/Asia Display, 2009.
[50] Hu, M., B. Yuan and X. Tang, Robust estimation of trifocal tensor using messy genetic algorithm. Chinese Journal of Electronics, Vol. 12, pp. 174-178, 2003.
[51] Huang, J. -F., S. -H. Lai, C. -M. Cheng, Robust Fundamental Matrix Estimation with Accurate Outlier Detection. Journal of Information Science and Engineering. Vol. 23, No. 4, pp. 1213-1226, 2007.
[52] Hung, Y.-P., Cooper, D. B., Cernuschi-Frias, B., Asymptotic Bayesian Surface Estimation Using an Image Sequence. International Journal of Computer Vision, Vol. 6, pp. 105-132, 1991.
[53] Kennedy, J. and R. C. Eberhart, Particle Swarm Optimization. IEEE International Conference on Neural Networks, pp. 1942-1948, 1995.
[54] Kim, K. and L.S. Davis, Multi-camera Tracking and Segmentation of Occluded People on Ground Plane Using Search-guided Particle Filtering. In Proceedings of European Conference on Computer Vision, Vol. 3953, pp.98-109, 2006.
[55] Levoy, M., Stanford Spherical Gantry, 2002, Online URL .
[56] Li, J., E. Li, Y. Chen, L. Xu, and Y. Zhang, Bundled Depth-map Merging for Multi-view Stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2769-2776, 2010.
[57] Li, R., B. Zeng, and M. L. Liou, A New Three-Step Search Algorithm for Block Motion Estimation. IEEE Transactions Circuits And Systems For Video Technology, Vol. 4., No. 4, pp. 438-442, 1994.
[58] Liebowitz, D., Camera Calibration and Reconstruction of Geometry from Images, PhD thesis, University of Oxford, Dept. Engineering Science, 2001.
[59] Liebowitz, D. and A. Zisserman, Combining scene and auto-calibration constraints, In Proceedings of the 7th International Conference on Computer Vision, September 1999.
[60] Lowe, D. G., Distinctive Image Features from Scale-invariant Keypoints. International Journal of Computer Vision, Vol. 60, No. 2, pp. 91-110, 2004.
[61] Lu J. and M.L. Liou, A Simple and Efficent Search Algorithm for Block-Matching Motion Estimation. IEEE Transactions Circuits And Systems For Video Technology, Vol. 7, No. 2, pp. 429-433, 1997.
[62] MacQueen, J. B., Some Methods for Classification and Analysis of Multivariate Observations, In Proceedings of the 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, pp. 281-297, 1967.
[63] Montemerlo, M., S. Thrun D. Koller, and B. Wegbreit, FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges. In Proceeding of the International Conference on Artificial Intelligence, 2003.
[64] Moreels, P. and P. Perona, Evaluation of Features Detectors and Descriptors based on 3D Objects. International Journal of Computer Vision, Vol. 73, No. 3, pp.263–284, 2007.
[65] Ni, K., H. Jin, and F. Dellaert, GroupSAC: Efficient Consensus in the Presence of Groupings, In Proceedings of the Twelfth International Conference on Computer Vision, 2009.
[66] Nie, Y., and K.-K. Ma, Adaptive Rood Pattern Search for Fast Block-Matching Motion Estimation. IEEE Transcations Image Processing, Vol.11, No.12, pp.1442-1448, 2002.
[67] Okutami, M. and T. Kanade, A Multiple-Baseline Stereo System. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, pp. 353–363, 1993.
[68] Quan, L. and Z. Lan, Linear N-Point Camera Pose Determination. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, pp. 774-780, 1999.
[69] Piater, J., Multi-Camera People Tracking by Collaborative Particle Filters and Principal Axis-Based Integration. In Asian Conference on Computer Vision, pp.365–374, 2007.
[70] Po, L.-M., and W.-C. Ma, A Novel Four-Step Search Algorithm for Fast Block Motion Estimation. IEEE Transcations Circuits And Systems For Video Technology, Vol.6, No. 3, pp. 313-317, 1996.
[71] Raguram, R., J. Frahm, and M. Pollefeys, A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus. In Proceedings of the European Conference on Computer Vision, pp. 500-513, 2008.
[72] Ratnaweera, A., S. K. Halgamuge, and H. C. Watson, Self-organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration Coefficients. In Proceedings of IEEE Transactions on Evolutionary Computation, Vol. 8, No. 3, pp. 240–255, 2004.
[73] Ross, P. J., Taguchi Techniques for Quality Engineering, second edition McGraw-Hill Professional, 1995.
[74] Rousseeuw, P. J. and A.M. Leroy, Robust regression and outlier detection. John Wiley & Sons, New York, 1987.
[75] Rousseeuw, P. J., Least Median of Squares Regression. Journal of the American Statistical Association, Vol. 79, No. 388, pp. 871-880, 1984.
[76] Salvi, J., An Approach to Coded Structured Light to Obtain Three Dimensional Information, PhD Thesis, Universitat de Girona, 1997.
[77] Scharstein, D. and R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, Vol. 47, pp. 7-42, 2002.
[78] Scharstein, D. and R. Szeliski, Middlebury Stereo Vision Online Benchmark, 2002, Online URL .
[79] Schmid, C. and A. Zisserman, The Geometry and Matching of Curves over Multiple Views. International Journal of Computer Vision, Vol. 40, No. 3, pp.199-233, 2000.
[80] Seitz, S. M. and C. R. Dyer, Photorealistic Scene Reconstruction by Voxel Coloring. International Journal of Computer Vision, Vol. 35, pp. 151-173, 1999.
[81] Seitz, S.M., B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 519-528, 2006.
[82] Seitz, S.M., B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, Middlebury Multi-view Stereo Reconstruction Online Benchmark, 2006, Online URL .
[83] Sloane, N. J. A., A Library of Orthogonal Arrays, 2007, http://www2.research.att.com/~njas/oadir/. Accessed 5 November 2012
[84] Snavely, N., Bundler: Structure from Motion for Unordered Image Collections Software, 2010, Online URL < http://phototour.cs.washington.edu/bundler/>.
[85] Snavely, N., S. M. Seitz, and R. Szeliski, Microsoft Photo Tourism System, 2006, Online URL < http://phototour.cs.washington.edu/>.
[86] Snavely, N., S. M. Seitz, and R. Szeliski, Modeling the World from Internet Photo Collections. International Journal of Computer Vision, Vol. 80, pp. 189-210, 2008.
[87] Snavely, N., S. M. Seitz, and R. Szeliski, Photo Tourism: Exploring Photo Collections in 3D. ACM Transactions on Graphics, Vol. 25, pp. 137-154, 2006.
[88] Song, P., X. Wu, and M.Y. Wang, Volumetric Stereo and Silhouette Fusion for Image-based Modeling. The Visual Computer Journal, Vol. 26, pp. 1435-1450, 2010.
[89] Spetsakis, M. E. and Y. Aloimonos, A Multi-frame Approach to Visual Motion Perception. In Proceedings of International Journal of Computer Vision, pp. 245-255, 1991.
[90] Strecha, C., Dense Multi-view Stereo Data Set, 2010, http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html. Accessed 5 November 2012
[91] Strecha, C., W.V. Hansen, L.V. Gool, P. Fua, and U. Thoennessen, On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2008.
[92] Szeliski, R., Computer Vision: Algorithms and Applications, Springer, Berlin, Germany, First Edition, 2011.
[93] Szeliski, R., Image alignment and stitching: A tutorial. Technical Report. MSR-TR-2004-92, Microsoft Research, 2005.
[94] Tang, C.-Y., H.-L. Chou, Y.-L. Wu, and Y.-H. Ding, Robust Fundamental Matrix Estimation Using Coplanar Constraints. International Journal of Pattern Recognition and Artificial Intelligence, Vol. 24, No. 4, pp. 783-805, 2008.
[95] Tang, C.-Y., Y.-L. Wu, and Y.-H. Lai, Fundamental Matrix Estimation Using Evolutionary Algorithms with Multi-Objective Functions. Journal of Information Science and Engineering, Vol. 24, No. 3, pp. 785-800, 2008.
[96] Torr, P.H.S., and A. Zisserman, MLESAC: a New Robust Estimator with Application to Estimating Image Geometry. Computer Vision and Image Understanding, Vol. 78, No. 1, pp. 138-156, 2000.
[97] Torr, P.H.S. and A Zisserman, Robust Parametrization and Computation of the Trifocal Tensor. Image and Vision Computing, 15, pp. 591-607, 1997.
[98] Torr, P.H.S., A. Zisserman, and S.J. Maybank, Robust Detection of Degenerate Configurations for the Fundamental Matrix. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1037-1042, 1995.
[99] Torr, P.H.S., and D.W. Murray, The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix. International Journal of Computer Vision, Vol. 24, No. 3, pp. 271-300, 1997.
[100] Torr, P.H.S., Bayesian Model Estimation and Selection for Epipolar Geometry and Generic Manifold Fitting. International Journal of Computer Vision, Vol. 50, No. 1, pp. 35-61, 2002.
[101] Tsai, J. T., T. K. Liu, and J. H. Chou, Hybrid Taguchi-genetic Algorithm for Global Numerical Optimization, In Proceedings of IEEE Transactions on Evolutionary Computation, Vol. 8, No. 4, pp. 365-377, 2004.
[102] Urquhart, CW, DS Green, ED Borland, 4D Capture Using Passive Stereo Photogrammetry. In IEEE European Conference on Visual Media Production, pp.196 , 2006.
[103] Visual Geometry Group, Multi-view and Oxford Colleges Building Reconstruction Data Set (2004), http://www.robots.ox.ac.uk/~vgg/data/data-mview.html. Accessed 5 November 2012.
[104] Walpole, R. E., R. H. Myers, S. L. Myers, and K. Ye, Probability & Statistics for Engineers & Scientists, Eighth Edition, Prentice Hall, 2006.
[105] Wang, S., L. Chen, A PSO Algorithm Based on Orthogonal Test Design, Fifth International Conference on Natural Computation, pp. 190-194, 2009.
[106] Weng, J., N. Ahuja, and T.S. Huang, Closed-form Solution+Maximum Likelihood: a Robust Approach to Motion and Structure Estimation. Computer Vision and Pattern Recognition, pp.381-386, 1988.
[107] Weng, M.-F., Y.-Y. Lin, N. C. Tang, and H.-Y. M. Liao, Visual Knowledge Transfer among Multiple Cameras for People Counting with Occlusion Handling. In Proceedings of the ACM International Conference on Multimedia, pp. 1-10, 2012.
[108] Wu, Y.-L., C.-Y. Tang, M.-K. Hor, and C.-T. Liu, Automatic Image Interpolation Using Homography. EURASIP Journal on Advances in Signal Processing, 2010.
[109] Wu, Y. H. and Z. Y. Hu, A Robust Method to Recognize Critical Configuration for Camera Calibration. Image and Vision Computing, Vol. 24, No. 12, 1313–1318, 2006.
[110] Xu, G., Z. Zhang, Epipolar Geometry in Stereo, Motion, and Object Recognition: A Unified Approach, Kluwer Academic Publishers. Norwell, MA, 1996.
[111] Yuan, C., G. Medioni, J. Kang, and I. Cohen, Detecting Motion Rregions in the Presence of a Strong Parallax from a Moving Camera by Multiview Geometric Constraints. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, No. 9, pp. 1627–1641, 2007.
[112] Yang, J., A. Bouzerdoum, and S. Phung, A particle swarm optimization algorithm based on orthogonal design. In Proceedings of IEEE Congress on Evolutionary Computation, pp. 1-7, 2010.
[113] Zhang, Z., Determining the Epipolar Geometry and its Uncertainty: a Review. International Journal of Computer Vision, Vol. 27, No. 2, pp. 161–198, 1998.
[114] Zhang, Z. and O. Faugeras, Three-Dimensional Motion Computation and Object Segmentation in a Long Sequence of Stereo Frames. International Journal of Computer Vision, Vol. 7, No. 3, pp. 211-241, 1992.
[115] Zhang, Z., Parameter Estimation Techniques: a Tutorial with Application to Conic Fitting. Image and Vision Computing Journal, Vol. 15, No. 1, pp. 59-76, 1997.
[116] Zhu, S., and K.-K. Ma, A New Diamond Search Algorithm for Fast Block-Matching Motion Estimation. IEEE Transcations Image Processing, Vol.9, No.2, pp.287-290, 2000.
描述 博士
國立政治大學
資訊科學學系
96753501
102
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0096753501
資料類型 thesis
dc.contributor.advisor 何瑁鎧<br>郭正佩<br>唐政元zh_TW
dc.contributor.advisor Hor, Maw Kae<br>Kuo, Pei Jeng<br>Tang, Cheng Yuanen_US
dc.contributor.author (Authors) 詹凱軒zh_TW
dc.contributor.author (Authors) Chan, Kai Hsuanen_US
dc.creator (作者) 詹凱軒zh_TW
dc.creator (作者) Chan, Kai Hsuanen_US
dc.date (日期) 2013en_US
dc.date.accessioned 1-Nov-2013 11:43:28 (UTC+8)-
dc.date.available 1-Nov-2013 11:43:28 (UTC+8)-
dc.date.issued (上傳時間) 1-Nov-2013 11:43:28 (UTC+8)-
dc.identifier (Other Identifiers) G0096753501en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/61488-
dc.description (描述) 博士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 96753501zh_TW
dc.description (描述) 102zh_TW
dc.description.abstract (摘要) 多視角影像比起單一影像,可提供更多資訊,有助於影像之分析、比對與建模。相關研究諸如利用多視角影像進行三維模型重建、影像拼接、影像修補、利用多視角攝影機進行物體與人物追蹤、與四維動態模型捕捉等。然而,多視角影像的研究中,自動且精確的偵測影像對應點一直是個困難的問題。其中多視角影像的退化(degeneracy)問題,經常被研究者所忽略,而此一問題往往造成幾何關係上錯誤的估算,影響後續處理的精確度。
本研究中我們所定義之退化問題涵蓋範圍較廣,包含傳統數學上的退化,以及同時考慮多視角幾何與影像紋路匹配所造成之問題,我們將這些問題歸納成三種類型並進行探討:第一種類型,當相機參數未知、且影像幾何關係也未估算時,需透過對應點進行影像幾何的計算,若這些對應點相對之三維座標與相機中心之配置,剛好落在特定曲面或平面之情況,則會造成錯誤的估算;第二種類型,當相機參數已知、或已估算求得影像幾何關係時,透過這些估算的幾何關係,進行對應點的轉換,在特定情況下也會造成錯誤的結果;第三種類型,當我們透過多視角幾何關係,結合影像紋路,利用貼片(patch-based)方法進行對應點相似度評估時,容易因為視角的差異、比例的差異、及貼片平面與物體表面的差異,造成無法正確評估之問題。
我們針對這三種類型的退化問題,分別進行分析與探討,並提供適當的建議與處理方法,以避開可能遇到的退化狀況。同時,無論是在對應點的估算、多視角三維重建、與多視角幾何的評估等,通常需要透過強健的參數估測方法來求得,我們也分析、討論近年許多代表性的參數估測方法,並提出更穩健的估測方法,應用於處理特定退化問題。
透過我們提出的退化規避方法,能有效的提高多視角影像處理與重建三維模型的精確度。
zh_TW
dc.description.abstract (摘要) Multiple view images carry much more information than that in single view images. This information is helpful in analyzing, matching, and reconstruction the points and models in real scenes. There are many related researches such as three-dimensional model reconstruction from multi-view images, multi-view image stitching, multi-view image inpainting, multi-view object and human tracking as well as four-dimensional dynamic model capture, etc. However, automatic and accurate corresponding point matching is one of the difficult problems in multiple view researches. Moreover, the multi-view degeneracy problems are normally ignored by researchers. These problems will include geometric estimation error and cause inaccuracy in subsequently processing.
In this dissertation, the definition of the degeneracy covers a wider scope. It includes the traditional degeneracy as discussed in mathematics as well as the corresponding point matching error caused by the model inaccuracy in geometries and in textures. We classify these problems into three categories and provide methods and guidelines for avoiding the degeneracy problems in multi-view image processing. The first category assumes the camera parameters or the geometries (for example, the fundamental matrix) are unknown and which must be estimated using the corresponding points. If the 3D locations of the corresponding points and the camera centers fall into particular configurations, such as the ruled quadric, the camera parameters estimation may yield multiple solutions or erroneous results. The second category assumes the camera geometry is known or known geometries (for example, the fundamental matrix or the trifocal tensor) are used to transfer the corresponding points. It may cause erroneous estimation under certain conditions. The third category occurs if we use the patch-based method to estimate the similarity of the corresponding points in multiple views, it will cause unreasonable estimation due to different viewing angle, image scaling, or inconsistencies between the patch plane and the object surface.
We propose various guidelines as well as processing methods in order to avoid the degeneracies. In addition, it generally requires robust parameter estimation methods to accomplish for the corresponding point estimations, the 3D reconstructions from multiple views, as well as for the multi-view geometries estimations. We analyzed the most representative parameter estimation methods developed in recent years and proposed the more robust methods that can be used to handle the specific degeneracy problems.
Using the proposed methods and guidelines for degeneracy avoidance, we can effectively improve the accuracy of the multi-view image processing as well as 3D model reconstructions.
en_US
dc.description.tableofcontents Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Related Work 4
1.3 Contributions of the Dissertation 6
1.4 Dissertation Organization 7
Chapter 2 Multiple View Geometry and Degeneracies 9
2.1 Introduction 9
2.2 Multiple View Geometry 10
2.2.1 Two view geometry 11
2.2.2 Three view geometry 15
2.2.3 Multiple view reconstruction 19
2.3 The Applications in Multiple Views 19
2.4 Degeneracies in Multiple View Images 21
2.4.1 Multi-view critical configurations 22
2.4.2 Degeneracy in geometry transfer 29
2.4.3 Degeneracy in the geometry and texture matching 37
2.5 Summary 40
Chapter 3 Parameter Estimation in Multiple View Geometry 43
3.1 Introduction 43
3.2 Parameter Estimations 43
3.2.1 Linear methods 44
3.2.2 Robust methods 45
3.2.3 Evolution methods 48
3.3 Experiments 51
3.3.1 Experimental data 51
3.3.2 The analysis in the parameter estimation methods 53
3.4 Summary 54
Chapter 4 Robust Methods for Critical Configuration 57
4.1 Introduction 57
4.2 Parameter Estimation by ROPSO 59
4.2.1 ROPSO algorithm 59
4.2.2 Homography estimation 64
4.2.3 Fundamental matrix estimation 66
4.2.4 Trifocal tensor estimation 68
4.3 The Combination of the ROPSO and Genetic Algorithm 69
4.4 Experiments 71
4.4.1 Homography estimation 72
4.4.2 Fundamental matrix estimation 76
4.4.3 Trifocal tensor estimation 88
4.5 Summary 98
Chapter 5 The Avoidance of Degeneracy in Geometry Transfer 99
5.1 Introduction 99
5.2 The Influence of the Degeneracy in Epipolar Transfer 102
5.3 Robust Trifocal Tensor for Structure from Motion Estimation 106
5.3.1 Structure from motion 106
5.3.2 The combination of the SfM and trifocal Tensor 107
5.4 Experiments 110
5.5 Summary 125
Chapter 6 The Avoidance of Degeneracy in Texture Matching 127
6.1 Introduction 127
6.2 Mutually Supported Patch Matching 129
6.2.1 Dynamic Gaussian filtering 131
6.2.2 Integrated similarity function 132
6.3 Image Selection and Filtering 133
6.4 Experiments 133
6.4.1 Experiment environment 133
6.4.2 Experiment on mutually supported patch 135
6.4.3 Accurate matching 138
6.5 Summary 140
Chapter 7 Conclusions 143
7.1 Multi-view critical configurations 143
7.2 Degeneracy in geometry transfer 144
7.3 Degeneracy in the geometry and texture matching 145
Chapter 8 Future Work 147
8.1 Degeneracy problems 147
8.2 Parameter estimation 148
8.3 Intelligence tools for more applications 148
Reference 150
zh_TW
dc.format.extent 13121678 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0096753501en_US
dc.subject (關鍵詞) 退化zh_TW
dc.subject (關鍵詞) 參數估測zh_TW
dc.subject (關鍵詞) 多視角幾何zh_TW
dc.subject (關鍵詞) 緊要配置zh_TW
dc.subject (關鍵詞) 粒子群最佳化zh_TW
dc.subject (關鍵詞) 貼片匹配法zh_TW
dc.subject (關鍵詞) degeneracyen_US
dc.subject (關鍵詞) parameter estimationen_US
dc.subject (關鍵詞) multiple view geometryen_US
dc.subject (關鍵詞) critical configurationen_US
dc.subject (關鍵詞) particle swarm optimizationen_US
dc.subject (關鍵詞) patch-based matchingen_US
dc.title (題名) 多視角影像中的退化問題與參數估測zh_TW
dc.title (題名) Degeneracies and Parameter Estimation in Multiple View Imagesen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] Agarwal, S., Y. Furukawa, N. Snavely, B. Curless, S.M. Seitz, and R. Szeliski, Reconstructing Rome, IEEE Computer Society, Vol. 43, pp. 40-47, 2010.
[2] Agarwal, S., Y. Furukawa, N. Snavely, B. Curless, S. M. Seitz and R. Szeliski, Building Rome in a Day. Communications of the ACM, Vol. 54, No. 14, pp. 105-112, 2011.
[3] Armangué, X. and J. Salvi, Overall View Regarding Fundamental Matrix Estimation. Image and Vision Computing, Vol. 21, No. 2, pp. 205-220, 2003.
[4] Barjatya, A., Block Matching Algorithm for Motion Estimation. DIP 6620 Final Project Paper, 2004.
[5] Barnard, S. T. and M.A. Fischler, Computational Stereo. ACM Computing Surveys, Vol. 14, pp. 553-572, 1982.
[6] Beck, J.V. and K.J. Arnold, Parameter Estimation in Engineering and Science. Wiley series in probability and mathematical statistics, Wiley, New York, 1977.
[7] Bouguet, J.Y., Camera Calibration Toolbox for Matlab, 2010, Online URL
[8] Bradley, D., T. Boubekeur, and W. Heidrich, Accurate Multi-View Reconstruction Using Robust Binocular Stereo and Surface Meshing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2008.
[9] Brahmachari, A.S., S. Sarkar, BLOGS: Balanced Local and Global Search for Non-Degenerate Two View Epipolar Geometry. In Proceedings of the Twelfth International Conference on Computer Vision, Kyoto, Japan 2009.
[10] Brown, M. and D. Lowe, Automatic Panoramic Image Stitching Using Invariant Features. In International Journal of Computer Vision, Vol. 74, No. 1, pp. 59-77, 2007.
[11] Brown, M. and D. G. Lowe, Unsupervised 3D Object Recognition and Reconstruction in Unordered Datasets. International Conference on 3-D Digital Imaging and Modeling, 2005.
[12] Campbell, N.D.F., G. Vogiatzis, C. Hernández, and R. Cipolla, Automatic 3D Object Segmentation in Multiple Views Using Volumetric Graph-Cuts. Image and Vision Computing, Vol. 28, pp. 14-25, 2008.
[13] Campbell, N.D.F., G. Vogiatzis, C. Hernández, and R. Cipolla, Using Multiple Hypotheses to Improve Depth-Maps for Multi-View Stereo. In Proceedings of the European Conference of Computer Vision, pp. 766-779, 2008.
[14] Cernuschi-Frias, B., Cooper, D. B., Hung, Y.-P., Belhumeur, P. N.,1989. Toward a Model-Based Bayesian Theory for Estimating and Recognizing Parameterized 3-D Objects Using Two or More Images Taken from Different Positions. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, 1028-1052.
[15] Chai, J. and S.D. Ma, Robust epipolar geometry estimation using genetic algorithm. Pattern Recognition Letters. Vol. 19, No. 9, pp. 829-838, 1998.
[16] Chan, K.-H., C.-Y. Tang, M.-K. Hor, and Y.-L. Wu, Robust trifocal tensor constraints for structure from motion estimation. Pattern Recognition Letters, Vol. 34, No. 6, pp. 627-636, 2013.
[17] Chan, K.-H., C.-Y. Tang, Y.-L. Wu, and M.-K. Hor, Robust Orthogonal Particle Swarm Optimization for Estimating the Fundamental Matrix, In Proceedings of IEEE Visual Communications and Image Processing, Tainan, Taiwan, November 2011.
[18] Chum, O. and J. Matas, Matching with PROSAC - Progressive Sample Consensus. In Conference on Computer Vision and Pattern Recognition, pp. 220-226, 2005.
[19] Connor, K. and I. Reid, Novel view specification and synthesis. In Proceeding of the British Machine Vision Conference, 2002.
[20] Dhond, U. R. and J. K. Aggarwal, Structure from Stereo: a Review. IEEE Transactions on System, Man, and Cybernetics, Vol. 19, pp. 1489-1510, 1989.
[21] Durrant-Whyte, H. and T. Bailey, Simultaneous localization and mapping: part I. IEEE Robotics and Automation Magazine, Vol. 13, No. 2, pp. 99-108, 2006.
[22] Eberhart, R. and Y. Shi, Particle Swarm Optimization: Developments, Applications and Resources. In Proceedings of the 2001 Congress on Evolutionary Computation, pp. 81-86, 2001.
[23] Faugeras, O. and B. Mourrain, About the Correspondences of Points Between N Images. In Proceedings of the IEEE Workshop on Representation of Visual Scenes, pp. 37–44, 1995.
[24] Faugeras, O.D., L. Quan, and P. Sturm, Self-calibration of a 1D Projective Camera and its Application to the Self-calibration of a 2D Projective Camera. In Proceeding of the European Conference on Computer Vision, Vol. 1, pp. 36-52, 1998.
[25] Faugeras, O. D., Q. Luong, and S. Maybank,. Camera self-calibration: Theory and experiments. In Proceeding of the European Conference on Computer Vision, pp. 321-334, 1992.
[26] Feng, C.L. and Y.S. Hung, A Robust Method for Estimating the Fundamental Matrix. In Proceedings of Conference on Digital Image Computing: Techniques and Applications, pp. 633-642, 2003.
[27] Fischler, M. A. and R. C. Bolles, Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, Vol. 24, pp. 381-395, 1981.
[28] Forsyth, D. A. and J. Ponce, Computer Vision A Modern Approach. Second Edition, Prentice Hall, New Jersey, 2011.
[29] Föstner, W., Reliability Analysis of Parameter Estimation in Linear Models with Application to Mensuration Problems in Computer Vision. Computer Vision, Graphics and Image Processing, Vol. 40, No. 3, pp. 273-310, 1987.
[30] Frahm, J.-M., P. Fite-Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu, Y.-H. Jen, E. Dunn, B. Clipp, S. Lazebnik, and M. Pollefeys, Building Rome on a Cloudless Day. In Proceedings of the European Conference on Computer Vision, pp. 368–381, 2010.
[31] Furukawa, Y. and J. Ponce, Accurate Camera Calibration from Multi-view Stereo and Bundle Adjustment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2008.
[32] Furukawa, Y. and J. Ponce, Accurate, Dense, and Robust Multi-view Stereopsis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2007.
[33] Furukawa, Y. and J. Ponce, High-fidelity image-based modeling. Technical Report, UIUC, 2006.
[34] Furukawa, Y., B. Curless, S.M. Seitz, and R. Szeliski, Towards Internet-scale Multi-view Stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1434-1441, 2010.
[35] Furukawa, Y., Patch-based Multi-view Stereo Software, 2010, Online URL < http://grail.cs.washington.edu/software/pmvs/>.
[36] Gao, W., Robot Vision Group Data Set, 2011. Online URL < http://vision.ia.ac.cn/index.htm>.
[37] Goesele, M., N. Snavely, B. Curless, H. Hoppe, and S.M. Seitz, Multi-View Stereo for Community Photo Collections. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1-8, 2007.
[38] Hartley, R. I. and A. Zisserman, Multiple View Geometry in Computer Vision, Second Edition, Cambridge University Press, 2004.
[39] Hartley, R. I., and F. Kahl, A Critical Configuration for Reconstruction from Rectilinear Motion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 511–517, 2003.
[40] Hartley R. I. and F. Kahl, Critical Configurations for Projective Reconstruction from Multiple Views. International Journal of Computer Vision, Vol. 71, No. 1, pp.5-47, 2006.
[41] Hedayat, A. S., N. J. A. Sloane, and J. Stufken, Orthogonal Arrays: Theory and Applications. New York: Springer-Verlag, 1999.
[42] Heinrich, S. B. and W.E. Snyder, Internal Constraints of the Trifocal Tensor. In Proceedings of CoRR, 2011.
[43] Hiep, V.H., R. Keriven, P. Labatut, and J.P. Pons, Towards High-resolution Large-scale Multi-view Stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1430-1437, 2009.
[44] Ho, S.-Y., H.-S. Lin, W.-H. Liauh, and S.-J. Ho, OPSO: Orthogonal Particle Swarm Optimization and Its Application to Task Assignment Problems. IEEE Transactions on Systems, Man, and Cybernetics—Part a: Systems and Humans, Vol. 38, No. 2, pp. 288-298, 2008.
[45] Hor, M.-K., C.-Y. Tang, Y.-L. Wu, K.-H. Chan, and J.-J. Tsai, Robust Refinement Methods for Camera Calibration and 3D Reconstruction from Multiple Images. Pattern Recognition Letters, Vol. 32, No. 8, pp.1210-1221, 2011.
[46] Hor, M.-K., and K.-H. Chan, and C.-Y. Tang, 3D Model Reconstruction Refinement from Multiple Images. International Conference on Multimedia Technology, 2011.
[47] Hor, M.-K., W.-C. Chen, C.-Y. Tang, Y.-L. Wu, K.-H. Chan, and K.-S. Wu, Refinement of 3D Models Reconstructed from Visual Hull. International Display Manufacturing Conference/3D Display System and Application/Asia Display, 2009.
[48] Hor, M.-K., W.-C. Chen, C.-Y. Tang, Y.-L. Wu, K.-H. Chan, and J.-J. Tsai, Using 3D Patches for Refinement of 3D Reconstruction from Multiple Images. International Display Manufacturing Conference/3D Display System and Application/Asia Display, 2009.
[49] Hor, M.-K., W.-C. Chen, C.-Y. Tang, Y.-L. Wu, K.-H. Chan, and J.-Y. Tsai, Generation of Dense Image Matching Using Epipolar Geometry. International Display Manufacturing Conference/3D Display System and Application/Asia Display, 2009.
[50] Hu, M., B. Yuan and X. Tang, Robust estimation of trifocal tensor using messy genetic algorithm. Chinese Journal of Electronics, Vol. 12, pp. 174-178, 2003.
[51] Huang, J. -F., S. -H. Lai, C. -M. Cheng, Robust Fundamental Matrix Estimation with Accurate Outlier Detection. Journal of Information Science and Engineering. Vol. 23, No. 4, pp. 1213-1226, 2007.
[52] Hung, Y.-P., Cooper, D. B., Cernuschi-Frias, B., Asymptotic Bayesian Surface Estimation Using an Image Sequence. International Journal of Computer Vision, Vol. 6, pp. 105-132, 1991.
[53] Kennedy, J. and R. C. Eberhart, Particle Swarm Optimization. IEEE International Conference on Neural Networks, pp. 1942-1948, 1995.
[54] Kim, K. and L.S. Davis, Multi-camera Tracking and Segmentation of Occluded People on Ground Plane Using Search-guided Particle Filtering. In Proceedings of European Conference on Computer Vision, Vol. 3953, pp.98-109, 2006.
[55] Levoy, M., Stanford Spherical Gantry, 2002, Online URL .
[56] Li, J., E. Li, Y. Chen, L. Xu, and Y. Zhang, Bundled Depth-map Merging for Multi-view Stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2769-2776, 2010.
[57] Li, R., B. Zeng, and M. L. Liou, A New Three-Step Search Algorithm for Block Motion Estimation. IEEE Transactions Circuits And Systems For Video Technology, Vol. 4., No. 4, pp. 438-442, 1994.
[58] Liebowitz, D., Camera Calibration and Reconstruction of Geometry from Images, PhD thesis, University of Oxford, Dept. Engineering Science, 2001.
[59] Liebowitz, D. and A. Zisserman, Combining scene and auto-calibration constraints, In Proceedings of the 7th International Conference on Computer Vision, September 1999.
[60] Lowe, D. G., Distinctive Image Features from Scale-invariant Keypoints. International Journal of Computer Vision, Vol. 60, No. 2, pp. 91-110, 2004.
[61] Lu J. and M.L. Liou, A Simple and Efficent Search Algorithm for Block-Matching Motion Estimation. IEEE Transactions Circuits And Systems For Video Technology, Vol. 7, No. 2, pp. 429-433, 1997.
[62] MacQueen, J. B., Some Methods for Classification and Analysis of Multivariate Observations, In Proceedings of the 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, pp. 281-297, 1967.
[63] Montemerlo, M., S. Thrun D. Koller, and B. Wegbreit, FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges. In Proceeding of the International Conference on Artificial Intelligence, 2003.
[64] Moreels, P. and P. Perona, Evaluation of Features Detectors and Descriptors based on 3D Objects. International Journal of Computer Vision, Vol. 73, No. 3, pp.263–284, 2007.
[65] Ni, K., H. Jin, and F. Dellaert, GroupSAC: Efficient Consensus in the Presence of Groupings, In Proceedings of the Twelfth International Conference on Computer Vision, 2009.
[66] Nie, Y., and K.-K. Ma, Adaptive Rood Pattern Search for Fast Block-Matching Motion Estimation. IEEE Transcations Image Processing, Vol.11, No.12, pp.1442-1448, 2002.
[67] Okutami, M. and T. Kanade, A Multiple-Baseline Stereo System. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, pp. 353–363, 1993.
[68] Quan, L. and Z. Lan, Linear N-Point Camera Pose Determination. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, pp. 774-780, 1999.
[69] Piater, J., Multi-Camera People Tracking by Collaborative Particle Filters and Principal Axis-Based Integration. In Asian Conference on Computer Vision, pp.365–374, 2007.
[70] Po, L.-M., and W.-C. Ma, A Novel Four-Step Search Algorithm for Fast Block Motion Estimation. IEEE Transcations Circuits And Systems For Video Technology, Vol.6, No. 3, pp. 313-317, 1996.
[71] Raguram, R., J. Frahm, and M. Pollefeys, A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus. In Proceedings of the European Conference on Computer Vision, pp. 500-513, 2008.
[72] Ratnaweera, A., S. K. Halgamuge, and H. C. Watson, Self-organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration Coefficients. In Proceedings of IEEE Transactions on Evolutionary Computation, Vol. 8, No. 3, pp. 240–255, 2004.
[73] Ross, P. J., Taguchi Techniques for Quality Engineering, second edition McGraw-Hill Professional, 1995.
[74] Rousseeuw, P. J. and A.M. Leroy, Robust regression and outlier detection. John Wiley & Sons, New York, 1987.
[75] Rousseeuw, P. J., Least Median of Squares Regression. Journal of the American Statistical Association, Vol. 79, No. 388, pp. 871-880, 1984.
[76] Salvi, J., An Approach to Coded Structured Light to Obtain Three Dimensional Information, PhD Thesis, Universitat de Girona, 1997.
[77] Scharstein, D. and R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, Vol. 47, pp. 7-42, 2002.
[78] Scharstein, D. and R. Szeliski, Middlebury Stereo Vision Online Benchmark, 2002, Online URL .
[79] Schmid, C. and A. Zisserman, The Geometry and Matching of Curves over Multiple Views. International Journal of Computer Vision, Vol. 40, No. 3, pp.199-233, 2000.
[80] Seitz, S. M. and C. R. Dyer, Photorealistic Scene Reconstruction by Voxel Coloring. International Journal of Computer Vision, Vol. 35, pp. 151-173, 1999.
[81] Seitz, S.M., B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 519-528, 2006.
[82] Seitz, S.M., B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, Middlebury Multi-view Stereo Reconstruction Online Benchmark, 2006, Online URL .
[83] Sloane, N. J. A., A Library of Orthogonal Arrays, 2007, http://www2.research.att.com/~njas/oadir/. Accessed 5 November 2012
[84] Snavely, N., Bundler: Structure from Motion for Unordered Image Collections Software, 2010, Online URL < http://phototour.cs.washington.edu/bundler/>.
[85] Snavely, N., S. M. Seitz, and R. Szeliski, Microsoft Photo Tourism System, 2006, Online URL < http://phototour.cs.washington.edu/>.
[86] Snavely, N., S. M. Seitz, and R. Szeliski, Modeling the World from Internet Photo Collections. International Journal of Computer Vision, Vol. 80, pp. 189-210, 2008.
[87] Snavely, N., S. M. Seitz, and R. Szeliski, Photo Tourism: Exploring Photo Collections in 3D. ACM Transactions on Graphics, Vol. 25, pp. 137-154, 2006.
[88] Song, P., X. Wu, and M.Y. Wang, Volumetric Stereo and Silhouette Fusion for Image-based Modeling. The Visual Computer Journal, Vol. 26, pp. 1435-1450, 2010.
[89] Spetsakis, M. E. and Y. Aloimonos, A Multi-frame Approach to Visual Motion Perception. In Proceedings of International Journal of Computer Vision, pp. 245-255, 1991.
[90] Strecha, C., Dense Multi-view Stereo Data Set, 2010, http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html. Accessed 5 November 2012
[91] Strecha, C., W.V. Hansen, L.V. Gool, P. Fua, and U. Thoennessen, On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2008.
[92] Szeliski, R., Computer Vision: Algorithms and Applications, Springer, Berlin, Germany, First Edition, 2011.
[93] Szeliski, R., Image alignment and stitching: A tutorial. Technical Report. MSR-TR-2004-92, Microsoft Research, 2005.
[94] Tang, C.-Y., H.-L. Chou, Y.-L. Wu, and Y.-H. Ding, Robust Fundamental Matrix Estimation Using Coplanar Constraints. International Journal of Pattern Recognition and Artificial Intelligence, Vol. 24, No. 4, pp. 783-805, 2008.
[95] Tang, C.-Y., Y.-L. Wu, and Y.-H. Lai, Fundamental Matrix Estimation Using Evolutionary Algorithms with Multi-Objective Functions. Journal of Information Science and Engineering, Vol. 24, No. 3, pp. 785-800, 2008.
[96] Torr, P.H.S., and A. Zisserman, MLESAC: a New Robust Estimator with Application to Estimating Image Geometry. Computer Vision and Image Understanding, Vol. 78, No. 1, pp. 138-156, 2000.
[97] Torr, P.H.S. and A Zisserman, Robust Parametrization and Computation of the Trifocal Tensor. Image and Vision Computing, 15, pp. 591-607, 1997.
[98] Torr, P.H.S., A. Zisserman, and S.J. Maybank, Robust Detection of Degenerate Configurations for the Fundamental Matrix. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1037-1042, 1995.
[99] Torr, P.H.S., and D.W. Murray, The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix. International Journal of Computer Vision, Vol. 24, No. 3, pp. 271-300, 1997.
[100] Torr, P.H.S., Bayesian Model Estimation and Selection for Epipolar Geometry and Generic Manifold Fitting. International Journal of Computer Vision, Vol. 50, No. 1, pp. 35-61, 2002.
[101] Tsai, J. T., T. K. Liu, and J. H. Chou, Hybrid Taguchi-genetic Algorithm for Global Numerical Optimization, In Proceedings of IEEE Transactions on Evolutionary Computation, Vol. 8, No. 4, pp. 365-377, 2004.
[102] Urquhart, CW, DS Green, ED Borland, 4D Capture Using Passive Stereo Photogrammetry. In IEEE European Conference on Visual Media Production, pp.196 , 2006.
[103] Visual Geometry Group, Multi-view and Oxford Colleges Building Reconstruction Data Set (2004), http://www.robots.ox.ac.uk/~vgg/data/data-mview.html. Accessed 5 November 2012.
[104] Walpole, R. E., R. H. Myers, S. L. Myers, and K. Ye, Probability & Statistics for Engineers & Scientists, Eighth Edition, Prentice Hall, 2006.
[105] Wang, S., L. Chen, A PSO Algorithm Based on Orthogonal Test Design, Fifth International Conference on Natural Computation, pp. 190-194, 2009.
[106] Weng, J., N. Ahuja, and T.S. Huang, Closed-form Solution+Maximum Likelihood: a Robust Approach to Motion and Structure Estimation. Computer Vision and Pattern Recognition, pp.381-386, 1988.
[107] Weng, M.-F., Y.-Y. Lin, N. C. Tang, and H.-Y. M. Liao, Visual Knowledge Transfer among Multiple Cameras for People Counting with Occlusion Handling. In Proceedings of the ACM International Conference on Multimedia, pp. 1-10, 2012.
[108] Wu, Y.-L., C.-Y. Tang, M.-K. Hor, and C.-T. Liu, Automatic Image Interpolation Using Homography. EURASIP Journal on Advances in Signal Processing, 2010.
[109] Wu, Y. H. and Z. Y. Hu, A Robust Method to Recognize Critical Configuration for Camera Calibration. Image and Vision Computing, Vol. 24, No. 12, 1313–1318, 2006.
[110] Xu, G., Z. Zhang, Epipolar Geometry in Stereo, Motion, and Object Recognition: A Unified Approach, Kluwer Academic Publishers. Norwell, MA, 1996.
[111] Yuan, C., G. Medioni, J. Kang, and I. Cohen, Detecting Motion Rregions in the Presence of a Strong Parallax from a Moving Camera by Multiview Geometric Constraints. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, No. 9, pp. 1627–1641, 2007.
[112] Yang, J., A. Bouzerdoum, and S. Phung, A particle swarm optimization algorithm based on orthogonal design. In Proceedings of IEEE Congress on Evolutionary Computation, pp. 1-7, 2010.
[113] Zhang, Z., Determining the Epipolar Geometry and its Uncertainty: a Review. International Journal of Computer Vision, Vol. 27, No. 2, pp. 161–198, 1998.
[114] Zhang, Z. and O. Faugeras, Three-Dimensional Motion Computation and Object Segmentation in a Long Sequence of Stereo Frames. International Journal of Computer Vision, Vol. 7, No. 3, pp. 211-241, 1992.
[115] Zhang, Z., Parameter Estimation Techniques: a Tutorial with Application to Conic Fitting. Image and Vision Computing Journal, Vol. 15, No. 1, pp. 59-76, 1997.
[116] Zhu, S., and K.-K. Ma, A New Diamond Search Algorithm for Fast Block-Matching Motion Estimation. IEEE Transcations Image Processing, Vol.9, No.2, pp.287-290, 2000.
zh_TW