dc.contributor | 應數系 | en_US |
dc.creator (作者) | 吳柏林 | zh_TW |
dc.date (日期) | 2013-11 | en_US |
dc.date.accessioned | 10-Dec-2013 17:14:43 (UTC+8) | - |
dc.date.available | 10-Dec-2013 17:14:43 (UTC+8) | - |
dc.date.issued (上傳時間) | 10-Dec-2013 17:14:43 (UTC+8) | - |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/62351 | - |
dc.description.abstract (摘要) | Nonparametric statistical tests are a distribution-free method without any assumption that data are drawn from a particular probability distribution. In this paper, to identify the distribution difference between two populations of fuzzy data, we derive a function that can describe continuous fuzzy data. In particular, the Kolmogorov–Smirnov two-sample test is used for distinguishing two populations of fuzzy data. Empirical studies illustrate that the Kolmogorov–Smirnov two-sample test enables us to judge whether two independent samples of continuous fuzzy data are derived from the same population. The results show that the proposed function is successful in distinguishing two populations of continuous fuzzy data and useful in various applications. | - |
dc.format.extent | 125 bytes | - |
dc.format.mimetype | text/html | - |
dc.language.iso | en_US | - |
dc.relation (關聯) | IEEJ Transactions on Electronics, Information and Systems,8(6),591-598 | en_US |
dc.title (題名) | Identifying the distribution difference between two populations of fuzzy data based on a nonparametric statistical method | en_US |
dc.type (資料類型) | article | en |
dc.identifier.doi (DOI) | 10.1002/tee.21901 | en_US |
dc.doi.uri (DOI) | http://dx.doi.org/10.1002/tee.21901 | en_US |