Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 適用於智慧型手機使用者之味覺資料庫建置與菜單推薦機制
Menu Recommendation System and Taste Database Constructed for Smartphone Users
作者 林信廷
Lin, Shin Ting
貢獻者 郭正佩
Kuo, Pei Jeng
林信廷
Lin, Shin Ting
關鍵詞 個人化推薦
味覺辨識
飲食記錄
LifeLog
Personalized recommendation
Taste identification
Dietary records
LifeLog
日期 2013
上傳時間 10-Feb-2014 14:56:42 (UTC+8)
摘要 中國有句諺語:「民以食為天」,食物乃人類生活所不可缺的要素之一,而人們對於食物則有各自的偏好,而要從琳瑯滿目的食物中依照個人喜好來推薦則成為一門重要的課題。
隨著科技的進步,智慧型手機的出現為人類帶來了許多便利,也逐漸改變了人們的生活方式,群眾可以透過智慧型手機來記錄生活的點滴,記錄的方式正走向數位化,而如何利用這些累積下來的數位資料來做分析與推薦也成為熱門的研究目標。
本論文從味覺方面著手,將LifeLog的飲食記錄與味覺做結合,並透過大眾分類與群眾外包的方式,將味覺資料由智慧型手機使用者處獲得,並建構成包含餐廳、餐點名稱以及其對應味覺之資料庫。
本論文實作了一個程式Foodtaste,包含了記錄餐點味覺資料,查詢個人記錄,以及實作數種推薦的功能。本論文並提出了數個計算方法,透過LifeLog累積下來的味覺資料進行計算,來獲得每位使用者的個人口味偏好和味覺比例,並將這些資料與餐點的味覺比例計算來對餐廳進行個人化的餐點推薦。
Foods and eating are the basic element of human`s life, and people have their own favorite in choosing foods. Thus it is an important issue to make some recommendation for people in front of a dazzling array of foods.

With the advances in technology, smartphones bring convenience to people and change their life style. One can use smartphones to record various things in his life. The ways of memories become digitalized, and how to use these digital data to analyze and give opinions becomes popular.

Base on one’s taste, present study combined dietary records and food taste in Lifelog, using Folksonomy and Crowdsourcing to acquire data of specific food taste from smartphone users, and linked these data to restaurant’s name and the name of the meal in our database.

We designed a smartphone application which called "Foodtaste". It provided users to record what they ate and how did it taste, looking up personal records, and several recommending methods. Our study also provides several methods in calculating cumulative data in Lifelog and acquiring the preference of one’s taste and ratio in variable foods from every user. Then we calculated these data to carry out personalized food recommendation.
參考文獻 [1] 劉怡君. 以食物名詞辨識為基礎的菜單建立與食物推薦系統. 臺灣大學電信工程學研究所學位論文,2010.
[2] 龔旭陽; 郭庭歡; 蔡京玶. 基於語意感測網路之智慧型適性化健康飲食推薦系統設計與實作—以三高患者為例. 2012.
[3] NORONHA, Jon, et al. Platemate: crowdsourcing nutritional analysis from food photographs. In: Proceedings of the 24th annual ACM symposium on User interface software and technology. ACM, 2011. p. 1-12.
[4] 林政輝. 以口碑為基礎之個人化餐廳推薦機制 A Personalized Restaurant Recommending System Based on Word of Mouth. 中原大學資訊管理研究所學位論文, 2010, 1-74.
[5]洪智力;林政輝. 個人化美食口碑推薦機制. 2009.
[6]張記銘,吳佩芳,王潔英. 食我網:美食推薦系統. 2010.
[7] 祁恒昱. 線上相似商品搜尋系統在智慧型手機上之實作. 臺灣大學電機工程學研究所學位論文, 2010.
[8] IBM 5in5,取自http://www.ibm.com/5in5
[9] KOBAYASHI, Yoshikazu, et al. Advanced taste sensors based on artificial lipids with global selectivity to basic taste qualities and high correlation to sensory scores. Sensors, 2010, 10.4: 3411-3443.
[10] TWOMEY, Karen; TRUEMPER, Andreas; MURPHY, Kilian. A portable sensing system for electronic tongue operations. Sensors, 2006, 6.11: 1679-1696.
[11] KARIYA, HANAKO; KURABAYASHI, SHUICHI; KIYOKI, YASUSHI. Information retrieval by taste impression with an integrated metadata extraction mechanisms. IEIC Technical Report (Institute of Electronics, Information and Communication Engineers), 2004, 104.176: 115-120.
[12] 鄭秉昌;呂怡貞. 煞是耐人尋味.科學人雜誌,2012年.取自 http://sa.ylib.com/MagCont.aspx?Unit=easylearn&id=1899
[13] 官生華. 味覺和味精. 臺灣醫界, 2010, 53.5: 55-56.
[14] HAYASHI, Nobuyuki, et al. Evaluation of the umami taste intensity of green tea by a taste sensor. Journal of agricultural and food chemistry, 2008, 56.16: 7384-7387.
[15] MIZOTA, Yasumichi, et al. Flavor evaluation using taste sensor for UHT processed milk stored in cartons having different light permeabilities. Milchwissenschaft, 2009, 64.2: 143-146.
[16] UYEN TRAN, Thi, et al. Analysis of the tastes of brown rice and milled rice with different milling yields using a taste sensing system. Food chemistry, 2004, 88.4: 557-566.
[17] IIYAMA, Satoru; YAHIRO, Miki; TOKO, Kiyoshi. Measurements of soy sauce using taste sensor. Sensors and Actuators B: Chemical, 2000, 66.1: 205-206.
[18] SASAKI, KEISUKE, et al. Analysis of pork extracts by taste sensing system and the relationship between umami substances and sensor output. Sens. Mater, 2005, 17: 397-404.
[19] POLSHIN, Evgeny, et al. Electronic tongue as a screening tool for rapid analysis of beer. Talanta, 2010, 81.1: 88-94.
[20] RUDNITSKAYA, Alisa, et al. Instrumental measurement of beer taste attributes using an electronic tongue. Analytica chimica acta, 2009, 646.1: 111-118.
[21] RUDNITSKAYA, A., et al. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of Madeira wine. Analytica chimica acta, 2010, 662.1: 82-89.
[22] SAKAI, NOBUAKI; OTSUKA, SHINGO; MIYAZAKI, NOBUYOSHI. A Kansei Database by Multivariate Analysis. IEIC Technical Report (Institute of Electronics, Information and Communication Engineers), 2001, 101.193: 159-166.
[23] TAHARA, Yusuke, et al. Development of a Portable Taste Sensor with a Lipid/Polymer Membrane. Sensors, 2013, 13.1: 1076-1084.
[24] TAHARA, Yusuke, et al. Development and evaluation of a miniaturized taste sensor chip. Sensors, 2011, 11.10: 9878-9886.
[25] TOKO, K.; HABARA, M. Taste sensor. Chemical Senses, 2005, 30.suppl 1: i256-i257.
[26] ZEPEDA, Lydia; DEAL, David. Think before you eat: photographic food diaries as intervention tools to change dietary decision making and attitudes. International Journal of Consumer Studies, 2008, 32.6: 692-698.
[27] KITAMURA, Keigo; YAMASAKI, Toshihiko; AIZAWA, Kiyoharu. Foodlog: Capture, analysis and retrieval of personal food images via web. In: Proceedings of the ACM multimedia 2009 workshop on Multimedia for cooking and eating activities. ACM, 2009. p. 23-30.
[28]吳偉誌.智慧型行動旅遊推薦系統之研究.國立高雄第一科技大學資訊管理研究所, 2012.
[29] 賴婉琳. 熱量控制之健康飲食於 Android 智慧型手機之設計. 2012.
[30] 陳伶志副研究員、余孝萱研究助理. 淺談群眾外包—以Amazon Mechanical Turk 為例.中央研究院 第1314 期.
[31] VIITAMAKI, S. The FLIRT model of crowdsourcing: planning and executing collective customer collaboration. 2008. PhD Thesis. MA thesis: Helsinki School of Economics.
[32] 黃文彥.運用群眾外包模式的Web2.0 網站如何跨越鴻溝。國立政治大學科技管理研究所碩士論文,2008.
[33] KIM, Hak Lae, et al. The state of the art in tag ontologies: a semantic model for tagging and folksonomies. In: International Conference on Dublin Core and Metadata Applications. 2008. p. 128-137.
描述 碩士
國立政治大學
資訊科學學系
99753032
102
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0099753032
資料類型 thesis
dc.contributor.advisor 郭正佩zh_TW
dc.contributor.advisor Kuo, Pei Jengen_US
dc.contributor.author (Authors) 林信廷zh_TW
dc.contributor.author (Authors) Lin, Shin Tingen_US
dc.creator (作者) 林信廷zh_TW
dc.creator (作者) Lin, Shin Tingen_US
dc.date (日期) 2013en_US
dc.date.accessioned 10-Feb-2014 14:56:42 (UTC+8)-
dc.date.available 10-Feb-2014 14:56:42 (UTC+8)-
dc.date.issued (上傳時間) 10-Feb-2014 14:56:42 (UTC+8)-
dc.identifier (Other Identifiers) G0099753032en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/63709-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 99753032zh_TW
dc.description (描述) 102zh_TW
dc.description.abstract (摘要) 中國有句諺語:「民以食為天」,食物乃人類生活所不可缺的要素之一,而人們對於食物則有各自的偏好,而要從琳瑯滿目的食物中依照個人喜好來推薦則成為一門重要的課題。
隨著科技的進步,智慧型手機的出現為人類帶來了許多便利,也逐漸改變了人們的生活方式,群眾可以透過智慧型手機來記錄生活的點滴,記錄的方式正走向數位化,而如何利用這些累積下來的數位資料來做分析與推薦也成為熱門的研究目標。
本論文從味覺方面著手,將LifeLog的飲食記錄與味覺做結合,並透過大眾分類與群眾外包的方式,將味覺資料由智慧型手機使用者處獲得,並建構成包含餐廳、餐點名稱以及其對應味覺之資料庫。
本論文實作了一個程式Foodtaste,包含了記錄餐點味覺資料,查詢個人記錄,以及實作數種推薦的功能。本論文並提出了數個計算方法,透過LifeLog累積下來的味覺資料進行計算,來獲得每位使用者的個人口味偏好和味覺比例,並將這些資料與餐點的味覺比例計算來對餐廳進行個人化的餐點推薦。
zh_TW
dc.description.abstract (摘要) Foods and eating are the basic element of human`s life, and people have their own favorite in choosing foods. Thus it is an important issue to make some recommendation for people in front of a dazzling array of foods.

With the advances in technology, smartphones bring convenience to people and change their life style. One can use smartphones to record various things in his life. The ways of memories become digitalized, and how to use these digital data to analyze and give opinions becomes popular.

Base on one’s taste, present study combined dietary records and food taste in Lifelog, using Folksonomy and Crowdsourcing to acquire data of specific food taste from smartphone users, and linked these data to restaurant’s name and the name of the meal in our database.

We designed a smartphone application which called "Foodtaste". It provided users to record what they ate and how did it taste, looking up personal records, and several recommending methods. Our study also provides several methods in calculating cumulative data in Lifelog and acquiring the preference of one’s taste and ratio in variable foods from every user. Then we calculated these data to carry out personalized food recommendation.
en_US
dc.description.tableofcontents 第一章 緒論 1
1.1研究背景與動機 1
1.2問題描述 3
1.2.1為什麼要做食物推薦 3
1.2.2為什麼要從味覺辨識來推薦餐點 4
1.2.3為何使用辣味 4
1.2.4為何沒有其他研究從味覺辨識來推薦食物 4
1.3研究目標 5
1.4 論文架構 5
第二章 文獻探討 6
2.1味覺與味覺印象語 6
2.2味覺感應器 7
2.3 LifeLog與飲食 8
2.4行動載具與LifeLog 9
2.5 LifeLog與網站 10
2.6飲食分析與群眾外包 12
2.7大眾分類 15
第三章 研究方法 16
3.1系統架構 16
3.2情境模擬 17
3.3推薦方法 18
3.3.1味覺標記 18
3.3.2味覺標記權重 20
3.3.3個人味覺比例 21
3.3.4群眾味覺比例 22
3.3.5個人味覺偏好 23
3.3.6餐點味覺比例 24
3.3.7個人味覺偏好推薦 25
3.3.8個人味覺比例推薦 26
3.3.9味覺分類推薦 29
3.4程式資料庫架構 30
3.4.1個人資料庫 31
3.4.2群眾資料庫 32
3.4.3推薦資料庫 33
第四章 評估方法與結果 35
4.1實驗限制 35
4.2第一階段實驗 35
4.3第二階段實驗 36
4.4實驗結果與分析 38
4.4.1味覺偏好推薦分析 38
4.4.2味覺比例推薦分析 40
4.4.3群眾推薦分析 41
4.4.4名次整體比較 43
4.4.5整體命中數比較 44
4.4.6味覺偏好推薦命中數分析 45
4.4.7味覺比例推薦命中數分析 46
4.4.8末3輪命中數比較 47
第五章 結論 48
第六章 參考文獻 50
zh_TW
dc.format.extent 1117235 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0099753032en_US
dc.subject (關鍵詞) 個人化推薦zh_TW
dc.subject (關鍵詞) 味覺辨識zh_TW
dc.subject (關鍵詞) 飲食記錄zh_TW
dc.subject (關鍵詞) LifeLogzh_TW
dc.subject (關鍵詞) Personalized recommendationen_US
dc.subject (關鍵詞) Taste identificationen_US
dc.subject (關鍵詞) Dietary recordsen_US
dc.subject (關鍵詞) LifeLogen_US
dc.title (題名) 適用於智慧型手機使用者之味覺資料庫建置與菜單推薦機制zh_TW
dc.title (題名) Menu Recommendation System and Taste Database Constructed for Smartphone Usersen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] 劉怡君. 以食物名詞辨識為基礎的菜單建立與食物推薦系統. 臺灣大學電信工程學研究所學位論文,2010.
[2] 龔旭陽; 郭庭歡; 蔡京玶. 基於語意感測網路之智慧型適性化健康飲食推薦系統設計與實作—以三高患者為例. 2012.
[3] NORONHA, Jon, et al. Platemate: crowdsourcing nutritional analysis from food photographs. In: Proceedings of the 24th annual ACM symposium on User interface software and technology. ACM, 2011. p. 1-12.
[4] 林政輝. 以口碑為基礎之個人化餐廳推薦機制 A Personalized Restaurant Recommending System Based on Word of Mouth. 中原大學資訊管理研究所學位論文, 2010, 1-74.
[5]洪智力;林政輝. 個人化美食口碑推薦機制. 2009.
[6]張記銘,吳佩芳,王潔英. 食我網:美食推薦系統. 2010.
[7] 祁恒昱. 線上相似商品搜尋系統在智慧型手機上之實作. 臺灣大學電機工程學研究所學位論文, 2010.
[8] IBM 5in5,取自http://www.ibm.com/5in5
[9] KOBAYASHI, Yoshikazu, et al. Advanced taste sensors based on artificial lipids with global selectivity to basic taste qualities and high correlation to sensory scores. Sensors, 2010, 10.4: 3411-3443.
[10] TWOMEY, Karen; TRUEMPER, Andreas; MURPHY, Kilian. A portable sensing system for electronic tongue operations. Sensors, 2006, 6.11: 1679-1696.
[11] KARIYA, HANAKO; KURABAYASHI, SHUICHI; KIYOKI, YASUSHI. Information retrieval by taste impression with an integrated metadata extraction mechanisms. IEIC Technical Report (Institute of Electronics, Information and Communication Engineers), 2004, 104.176: 115-120.
[12] 鄭秉昌;呂怡貞. 煞是耐人尋味.科學人雜誌,2012年.取自 http://sa.ylib.com/MagCont.aspx?Unit=easylearn&id=1899
[13] 官生華. 味覺和味精. 臺灣醫界, 2010, 53.5: 55-56.
[14] HAYASHI, Nobuyuki, et al. Evaluation of the umami taste intensity of green tea by a taste sensor. Journal of agricultural and food chemistry, 2008, 56.16: 7384-7387.
[15] MIZOTA, Yasumichi, et al. Flavor evaluation using taste sensor for UHT processed milk stored in cartons having different light permeabilities. Milchwissenschaft, 2009, 64.2: 143-146.
[16] UYEN TRAN, Thi, et al. Analysis of the tastes of brown rice and milled rice with different milling yields using a taste sensing system. Food chemistry, 2004, 88.4: 557-566.
[17] IIYAMA, Satoru; YAHIRO, Miki; TOKO, Kiyoshi. Measurements of soy sauce using taste sensor. Sensors and Actuators B: Chemical, 2000, 66.1: 205-206.
[18] SASAKI, KEISUKE, et al. Analysis of pork extracts by taste sensing system and the relationship between umami substances and sensor output. Sens. Mater, 2005, 17: 397-404.
[19] POLSHIN, Evgeny, et al. Electronic tongue as a screening tool for rapid analysis of beer. Talanta, 2010, 81.1: 88-94.
[20] RUDNITSKAYA, Alisa, et al. Instrumental measurement of beer taste attributes using an electronic tongue. Analytica chimica acta, 2009, 646.1: 111-118.
[21] RUDNITSKAYA, A., et al. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of Madeira wine. Analytica chimica acta, 2010, 662.1: 82-89.
[22] SAKAI, NOBUAKI; OTSUKA, SHINGO; MIYAZAKI, NOBUYOSHI. A Kansei Database by Multivariate Analysis. IEIC Technical Report (Institute of Electronics, Information and Communication Engineers), 2001, 101.193: 159-166.
[23] TAHARA, Yusuke, et al. Development of a Portable Taste Sensor with a Lipid/Polymer Membrane. Sensors, 2013, 13.1: 1076-1084.
[24] TAHARA, Yusuke, et al. Development and evaluation of a miniaturized taste sensor chip. Sensors, 2011, 11.10: 9878-9886.
[25] TOKO, K.; HABARA, M. Taste sensor. Chemical Senses, 2005, 30.suppl 1: i256-i257.
[26] ZEPEDA, Lydia; DEAL, David. Think before you eat: photographic food diaries as intervention tools to change dietary decision making and attitudes. International Journal of Consumer Studies, 2008, 32.6: 692-698.
[27] KITAMURA, Keigo; YAMASAKI, Toshihiko; AIZAWA, Kiyoharu. Foodlog: Capture, analysis and retrieval of personal food images via web. In: Proceedings of the ACM multimedia 2009 workshop on Multimedia for cooking and eating activities. ACM, 2009. p. 23-30.
[28]吳偉誌.智慧型行動旅遊推薦系統之研究.國立高雄第一科技大學資訊管理研究所, 2012.
[29] 賴婉琳. 熱量控制之健康飲食於 Android 智慧型手機之設計. 2012.
[30] 陳伶志副研究員、余孝萱研究助理. 淺談群眾外包—以Amazon Mechanical Turk 為例.中央研究院 第1314 期.
[31] VIITAMAKI, S. The FLIRT model of crowdsourcing: planning and executing collective customer collaboration. 2008. PhD Thesis. MA thesis: Helsinki School of Economics.
[32] 黃文彥.運用群眾外包模式的Web2.0 網站如何跨越鴻溝。國立政治大學科技管理研究所碩士論文,2008.
[33] KIM, Hak Lae, et al. The state of the art in tag ontologies: a semantic model for tagging and folksonomies. In: International Conference on Dublin Core and Metadata Applications. 2008. p. 128-137.
zh_TW