Publications-Periodical Articles

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 Swarm Intelligence for Cardinality-Constrained Portfolio Problems
作者 林我聰
Deng, Guang-Feng; Lin, Woo-Tsong
貢獻者 資管系
關鍵詞 Particle swarm optimization;cardinality constrained portfolio optimization problem;Markowitz mean-variance model;nonlinear mixed quadratic programming problem;swarm intelligence
日期 2010-11
上傳時間 18-Feb-2014 15:18:20 (UTC+8)
摘要 This work presents Particle Swarm Optimization (PSO), a collaborative population-based swarm intelligent algorithm for solving the cardinality constraints portfolio optimization problem (CCPO problem). To solve the CCPO problem, the proposed improved PSO increases exploration in the initial search steps and improves convergence speed in the final search steps. Numerical solutions are obtained for five analyses of weekly price data for the following indices for the period March, 1992 to September, 1997: Hang Seng 31 in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan. The computational test results indicate that the proposed PSO outperformed basic PSO algorithm, genetic algorithm (GA), simulated annealing (SA), and tabu search (TS) in most cases.
關聯 Lecture Notes in Artificial Intelligence, 6423, 406-415
資料來源 http://link.springer.com/chapter/10.1007%2F978-3-642-16696-9_44
資料類型 article
DOI http://dx.doi.org/10.1007/978-3-642-16696-9_44
dc.contributor 資管系en_US
dc.creator (作者) 林我聰zh_TW
dc.creator (作者) Deng, Guang-Feng; Lin, Woo-Tsongen_US
dc.date (日期) 2010-11en_US
dc.date.accessioned 18-Feb-2014 15:18:20 (UTC+8)-
dc.date.available 18-Feb-2014 15:18:20 (UTC+8)-
dc.date.issued (上傳時間) 18-Feb-2014 15:18:20 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/63949-
dc.description.abstract (摘要) This work presents Particle Swarm Optimization (PSO), a collaborative population-based swarm intelligent algorithm for solving the cardinality constraints portfolio optimization problem (CCPO problem). To solve the CCPO problem, the proposed improved PSO increases exploration in the initial search steps and improves convergence speed in the final search steps. Numerical solutions are obtained for five analyses of weekly price data for the following indices for the period March, 1992 to September, 1997: Hang Seng 31 in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan. The computational test results indicate that the proposed PSO outperformed basic PSO algorithm, genetic algorithm (GA), simulated annealing (SA), and tabu search (TS) in most cases.en_US
dc.format.extent 262490 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.relation (關聯) Lecture Notes in Artificial Intelligence, 6423, 406-415en_US
dc.source.uri (資料來源) http://link.springer.com/chapter/10.1007%2F978-3-642-16696-9_44en_US
dc.subject (關鍵詞) Particle swarm optimization;cardinality constrained portfolio optimization problem;Markowitz mean-variance model;nonlinear mixed quadratic programming problem;swarm intelligenceen_US
dc.title (題名) Swarm Intelligence for Cardinality-Constrained Portfolio Problemsen_US
dc.type (資料類型) articleen
dc.identifier.doi (DOI) 10.1007/978-3-642-16696-9_44en_US
dc.doi.uri (DOI) http://dx.doi.org/10.1007/978-3-642-16696-9_44en_US