Publications-Periodical Articles

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 Extracting Informative Variables in the Validation of Two-group Causal Relationship
作者 洪英超
Hung, Ying-chao; Tseng, Neng-fang
貢獻者 統計系
關鍵詞 Causal relationship;Vector autoregression model;Informative variables;Modified Wald test;Automatic computer-search algorithm
日期 2013.06
上傳時間 21-May-2014 17:32:10 (UTC+8)
摘要 The validation of causal relationship between two groups of multivariate time series data often requires the precedence knowledge of all variables. However, in practice one finds that some variables may be negligible in describing the underlying causal structure. In this article we provide an explicit definition of "non-informative variables" in a two-group causal relationship and introduce various automatic computer-search algorithms that can be utilized to extract informative variables based on a hypothesis testing procedure. The result allows us to represent a simplified causal relationship by using minimum possible information on two groups of variables
關聯 Computational Statistics, 28(3), 1151-1167
資料類型 article
DOI http://dx.doi.org/10.1007/s00180-012-0351-z
dc.contributor 統計系en_US
dc.creator (作者) 洪英超zh_TW
dc.creator (作者) Hung, Ying-chao; Tseng, Neng-fangen_US
dc.date (日期) 2013.06en_US
dc.date.accessioned 21-May-2014 17:32:10 (UTC+8)-
dc.date.available 21-May-2014 17:32:10 (UTC+8)-
dc.date.issued (上傳時間) 21-May-2014 17:32:10 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/66133-
dc.description.abstract (摘要) The validation of causal relationship between two groups of multivariate time series data often requires the precedence knowledge of all variables. However, in practice one finds that some variables may be negligible in describing the underlying causal structure. In this article we provide an explicit definition of "non-informative variables" in a two-group causal relationship and introduce various automatic computer-search algorithms that can be utilized to extract informative variables based on a hypothesis testing procedure. The result allows us to represent a simplified causal relationship by using minimum possible information on two groups of variablesen_US
dc.format.extent 146 bytes-
dc.format.mimetype text/html-
dc.language.iso en_US-
dc.relation (關聯) Computational Statistics, 28(3), 1151-1167en_US
dc.subject (關鍵詞) Causal relationship;Vector autoregression model;Informative variables;Modified Wald test;Automatic computer-search algorithmen_US
dc.title (題名) Extracting Informative Variables in the Validation of Two-group Causal Relationshipen_US
dc.type (資料類型) articleen
dc.identifier.doi (DOI) 10.1007/s00180-012-0351-zen_US
dc.doi.uri (DOI) http://dx.doi.org/10.1007/s00180-012-0351-zen_US